Elucidation of Toxicity Pathways in Lung Epithelial Cells Induced by Silicon Dioxide Nanoparticles
نویسندگان
چکیده
A study into the effects of amorphous nano-SiO2 particles on A549 lung epithelial cells was undertaken using proteomics to understand the interactions that occur and the biological consequences of exposure of lung to nanoparticles. Suitable conditions for treatment, where A549 cells remained viable for the exposure period, were established by following changes in cell morphology, flow cytometry, and MTT reduction. Label-free proteomics was used to estimate the relative level of proteins from their component tryptic peptides detected by mass spectrometry. It was found that A549 cells tolerated treatment with 100 µg/ml nano-SiO2 in the presence of 1.25% serum for at least 4 h. After this time detrimental changes in cell morphology, flow cytometry, and MTT reduction were evident. Proteomics performed after 4 h indicated changes in the expression of 47 proteins. Most of the proteins affected fell into four functional groups, indicating that the most prominent cellular changes were those that affected apoptosis regulation (e.g. UCP2 and calpain-12), structural reorganisation and regulation of actin cytoskeleton (e.g. PHACTR1), the unfolded protein response (e.g. HSP 90), and proteins involved in protein synthesis (e.g. ribosomal proteins). Treatment with just 10 µg/ml nano-SiO2 particles in serum-free medium resulted in a rapid deterioration of the cells and in medium containing 10% serum the cells were resistant to up to 1000 µg/ml nano-SiO2 particles, suggesting interaction of serum components with the nanoparticles. A variety of serum proteins were found which bound to nano-SiO2 particles, the most prominent of which were albumin, apolipoprotein A-I, hemoglobin, vitronectin and fibronectin. The use of a proteomics platform, with appropriately designed experimental conditions, enabled the early biological perturbations induced by nano-SiO2 in a model target cell system to be identified. The approach facilitates the design of more focused test systems for use in tiered evaluations of nanomaterials.
منابع مشابه
Evaluation of silica nanoparticles cytotoxicity (20-40 nm) on cancerous epithelial cell (A549) and fibroblasts cells of human normal lung fibroblast (MRC5)
Introduction: Silica nanoparticles have received more attraction in medical and industrial applications due to their unique properties such as small size, the possibility of surface functionalization, ease of production, and low cost. So, it is necessary to study the respiratory toxicity of occupational exposure due to the production and increasing use of silica nanoparticles, especially in the...
متن کاملTreatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins
Recent evidence suggests silicon dioxide micro- and nanoparticles induce cytotoxic effects on lung cells. Thus, there is an increasing concern regarding their potential health hazard. Nevertheless, the putative toxicity of nanoparticles in mammalian cells has not yet been systematically investigated. We previously noted that several metallic oxide nanoparticles exert differential cytotoxic effe...
متن کاملMechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells
ZnO NPs (zinc oxide nanoparticles) has generated significant scientific interest as a novel antibacterial and anticancer agent. Since oxidative stress is a critical determinant of ZnO NPs-induced damage, it is necessary to characterize their underlying mode of action. Different structural and physicochemical properties of ZnO NPs such as particle surface, size, shape, crystal structure, chemica...
متن کاملOocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways
The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embr...
متن کاملEffect of thalidomide on the alveolar epithelial cells in the lung fibrosis induced by bleomycin in mice
Introduction: Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. In the adults type I and II pneumocytes, forms Components of the alveolar epithelial cells. In this study, we investigated the effect of thalidomide on the alveolar epithelial cells (type I and II pneumocytes) in ...
متن کامل