DNA replication at the single-molecule level.

نویسندگان

  • S A Stratmann
  • A M van Oijen
چکیده

A cell can be thought of as a highly sophisticated micro factory: in a pool of billions of molecules - metabolites, structural proteins, enzymes, oligonucleotides - multi-subunit complexes assemble to perform a large number of basic cellular tasks, such as DNA replication, RNA/protein synthesis or intracellular transport. By purifying single components and using them to reconstitute molecular processes in a test tube, researchers have gathered crucial knowledge about mechanistic, dynamic and structural properties of biochemical pathways. However, to sort this information into an accurate cellular road map, we need to understand reactions in their relevant context within the cellular hierarchy, which is at the individual molecule level within a crowded, cellular environment. Reactions occur in a stochastic fashion, have short-lived and not necessarily well-defined intermediates, and dynamically form functional entities. With the use of single-molecule techniques these steps can be followed and detailed kinetic information that otherwise would be hidden in ensemble averaging can be obtained. One of the first complex cellular tasks that have been studied at the single-molecule level is the replication of DNA. The replisome, the multi-protein machinery responsible for copying DNA, is built from a large number of proteins that function together in an intricate and efficient fashion allowing the complex to tolerate DNA damage, roadblocks or fluctuations in subunit concentration. In this review, we summarize advances in single-molecule studies, both in vitro and in vivo, that have contributed to our current knowledge of the mechanistic principles underlying DNA replication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی کارایی تکنیک تکثیر دایره‌ای چرخان برای تشخیص سریع قارچ کلادوفیالوفورا کاریونی و کلادوفیالوفورا یگرزی

Background and Objective: Epidemiological studies indicate that not only the incidence of fungal infections is dramatically on the rise, especially in the immunocompromised hosts, but also the sensitivity of etiological agents to antifungal drugs shows a remarkable reduction. Therefore, early detection at the species level is critically important for proper clinical management. Because standard...

متن کامل

جداسازی پروتئین LMG از بافت کبد موش و میانکنش آن با

ABSTRACT In eukaryote cells, DNA is complexed with a series of basic proteins making units of chromatin structure named nucleosomes. In addition, nonhistone proteins with different function are the components of chromatin. Among these proteins, a group with a low mobility on gel electrophoresis have been identified and named LMG. In this study a LMG protein with a molecular weigh of 160 ...

متن کامل

Single-molecule studies of DNA mechanics.

During the past decade, physical techniques such as optical tweezers and atomic force microscopy were used to study the mechanical properties of DNA at the single-molecule level. Knowledge of DNA's stretching and twisting properties now permits these single-molecule techniques to be used in the study of biological processes such as DNA replication and transcription.

متن کامل

Stretching and immobilization of DNA for studies of protein–DNA interactions at the single-molecule level

Single-molecule studies of the interactions of DNA and proteins are important in a variety of biological or biotechnology processes ranging from the protein’s search for its DNA target site, DNA replication, transcription, or repair, and genome sequencing. A critical requirement for single-molecule studies is the stretching and immobilization of otherwise randomly coiled DNA molecules. Several ...

متن کامل

Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides (Figure 1). The growing product double-strand DNA (dsDNA) is extended with laminar flow and visualized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical Society reviews

دوره 43 4  شماره 

صفحات  -

تاریخ انتشار 2014