Hypoxic-Ischemic Brain Injury in Piglets
نویسندگان
چکیده
Background and Purpose: The excitatory amino acid inhibitor MK-801 has been shown in many animals species to protect against hypoxic-ischemic brain injury. We sought to determine whether hypoxic-ischemic injury to the newborn pig's brain could be prevented by the use of MK-801. Methods: Hypoxic-ischemic injury to the brain was induced in forty 0-3-day-old piglets. They were randomized to receive either 3 mg/kg MK-801 (MK-801 group, n=20) or vehicle (control group, n=19) prior to insult At time 0, the carotid arteries were ligated and the blood pressure was reduced by one third by hemorrhage. At 15 minutes, inspired oxygen was reduced from 50% to 6%. At 30 minutes, inspired oxygen was changed to 100%, carotid ligatures were released, and the withdrawn blood was reinfused. An additional 14 piglets received 3 mg/kg MK-801 but not hypoxic-ischemic injury (drug-only group), and a final group of 11 piglets were subjected to only a sham operation (sham group). Results: Neurological examination scores at 24, 48, and 72 hours showed that MK-801 and drug-only piglets were significantly worse than the controls. Pathological examination of the brains at 72 hours showed significantly greater damage in the brains of the MK-801 and control pigs relative to the sham and drug-only groups. No differences were found between the control and the MK-801 groups. No differences were found between the sham and drug-only groups. Conclusions: MK-801, at a dose of 3 mg/kg, causes neurological dysfunction in piglets lasting at least 72 hours, but neither causes brain damage nor ameliorates the effects of hypoxicischemic injury to the brain of the newborn pig. (Stroke 1991^22:1270-1275)
منابع مشابه
Measurement of Lactate Content and Amide Proton Transfer Values in the Basal Ganglia of a Neonatal Piglet Hypoxic-Ischemic Brain Injury Model Using MRI.
BACKGROUND AND PURPOSE As amide proton transfer imaging is sensitive to protein content and intracellular pH, it has been widely used in the nervous system, including brain tumors and stroke. This work aimed to measure the lactate content and amide proton transfer values in the basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model by using MR spectroscopy and amide proton trans...
متن کاملGlucose given after hypoxic ischemia does not affect brain injury in piglets.
BACKGROUND AND PURPOSE Giving glucose before hypoxic ischemia worsens brain injury in piglets. Does giving glucose after hypoxic ischemia affect severity of injury? METHODS Forty-three 0- to 3-day-old pigs were used. All piglets received 2 U/kg insulin before injury to prevent stress-induced hyperglycemia. Hypoxic ischemic brain damage was induced by clamping both carotid arteries and reducin...
متن کاملEffect of Neonatal Asphyxia on the Impairment of the Auditory Pathway by Recording Auditory Brainstem Responses in Newborn Piglets: A New Experimentation Model to Study the Perinatal Hypoxic-Ischemic Damage on the Auditory System
INTRODUCTION Hypoxia-ischemia (HI) is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets. METHOD Hypoxia-ischemia was ind...
متن کاملHypoxic-ischemic encephalopathy in a young man due to tramadol overdose
Objective: Tramadol is a synthetic analgesic with two mechanisms. The opioid and non-opioid mechanisms are responsible for tramadol side effects. Non-opioid side effects of tramadol are due to the reuptake inhibitions of serotonin and norepinephrine. Some of the side effects include anaphylactoid reactions, CNS depression, hypoglycemia, hypotension, respiratory depression, seizures, and seroton...
متن کاملCyclosporine Treatment Reduces Oxygen Free Radical Generation and Oxidative Stress in the Brain of Hypoxia-Reoxygenated Newborn Piglets
Oxygen free radicals have been implicated in the pathogenesis of hypoxic-ischemic encephalopathy. It has previously been shown in traumatic brain injury animal models that treatment with cyclosporine reduces brain injury. However, the potential neuroprotective effect of cyclosporine in asphyxiated neonates has yet to be fully studied. Using an acute newborn swine model of hypoxia-reoxygenation,...
متن کامل