An inverse radiative transfer model of the vegetation canopy based on automatic differentiation
نویسندگان
چکیده
This paper presents an inverse model of radiation transfer processes occurring in the solar domain in vegetation plant canopies. It uses a gradient method to minimize the misfit between model simulation and observed radiant fluxes plus the deviation from prior information on the unknown model parameters. The second derivative of the misfit approximates uncertainty ranges for the estimated model parameters. In a second step, uncertainties are propagated from parameters to simulated radiant fluxes via the model’s first derivative. All derivative information is provided by a highly efficient code generated via automatic differentiation of the radiative transfer code. The paper further derives and evaluates an approach for avoiding secondary minima of the misfit. The approach exploits the smooth dependence of the solution on the observations, and relies on a database of solutions for a discretized version of the observation space. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
A coupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape
Detailed knowledge of light interactions between the atmosphere and vegetation, and within vegetation are of particular interest for terrestrial carbon cycle studies and optical remote sensing. This study describes a model for 3-D canopy radiative transfer that is directly coupled with an atmospheric radiative transfer model (Forest Light Environmental Simulator, FLiES). The model was developed...
متن کاملRetrieving Canopy Variables by Radiative Transfer Model Inversion – an Automated Regional Approach for Imaging Spectrometer Data
A new, automated, regional approach is presented for the estimation of leaf area index, leaf chlorophyll, dry matter, and water content, based on the inversion of the combined leaf and canopy radiative transfer model PROSPECT+SAILh. The approach, named CRASh, is open to different types of imaging spectrometers, although it has been originally designed for airborne hyperspectral sensors with a w...
متن کاملEstimating vegetation structural effects on carbon uptake using satellite data fusion and inverse modeling
Regional analyses of biogeochemical processes can benefit significantly from observational information on land cover, vegetation structure (e.g., leaf area index), and biophysical properties such as fractional PAR absorption. Few remote sensing efforts have provided a suite of plant attributes needed to link vegetation structure to ecosystem function at high spatial resolution. In arid and semi...
متن کاملDissertation: B. Koetz
Vegetation controls important ecosystem processes responsible for energy and mass exchanges within the terrestrial biosphere. A comprehensive characterization of the vegetation canopy is thus required to monitor the heterogeneous and dynamic terrestrial biosphere. Although Earth Observation provides detailed measurements of the Earth surface, it has been a challenge to produce reliable data set...
متن کاملEstimation of Vegetation Water Content with MODIS data and Radiative Transfer Simulation
Radiative-transfer physically-based studies have previously demonstrated the relationship between leaf water content and leaf-level reflectance in the near-infrared spectral region. The successful scaling up of such methods to the canopy level requires modeling the effect of canopy structure and viewing geometry on reflectance bands and optical indices used for estimation of water content, such...
متن کامل