Existence of Traveling-Wave Solutions for a Bistable Evolutionary Ecology Model

نویسندگان

  • Jack D. Dockery
  • Roger Lui
چکیده

The existence of travelling wave solutions for a density-dependent selection migration model in population genetics is proven. A single locus and two alleles are assumed. It is also assumed that the fitnesses of the heterozygotes in the population are below those of the homozygotes. The method of proof is by constructing an isolating neighborhood and computing a connection index. Key words, population genetics, travelling waves, wave speed, connection index, isolated invariant set, homotopy AMS(MOS) subject classifications. 35K57, 92A10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

McKean caricature of the FitzHugh-Nagumo model: traveling pulses in a discrete diffusive medium.

This paper investigates traveling wave solutions of the spatially discrete reaction-diffusion systems whose kinetics are modeled by the McKean caricature of the FitzHugh-Nagumo model. In the limit of a weak coupling strength, we construct the traveling wave solutions and obtain the critical coupling constant below which propagation failure occurs. We report the existence of two different pulse ...

متن کامل

Traveling Wave Solutions for Bistable Fractional Allen-cahn Equations with a Pyramidal Front

Abstract. Using the method of sub-super-solution, we construct a solution of (−∆)su − cuz − f(u) = 0 on R of pyramidal shape. Here (−∆)s is the fractional Laplacian of sub-critical order 1/2 < s < 1 and f is a bistable nonlinearity. Hence, the existence of a traveling wave solution for the parabolic fractional Allen-Cahn equation with pyramidal front is asserted. The maximum of planar traveling...

متن کامل

Complexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations

In this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. The traveling wave hypothesis yields complexiton solutions. Subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. The constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...

متن کامل

Traveling Wave Solutions of Reaction-Diffusion Equations Arising in Atherosclerosis Models

In this short review article, two atherosclerosis models are presented, one as a scalar equation and the other one as a system of two equations. They are given in terms of reaction-diffusion equations in an infinite strip with nonlinear boundary conditions. The existence of traveling wave solutions is studied for these models. The monostable and bistable cases are introduced and analyzed.

متن کامل

Non-local reaction-diffusion equations with a barrier

Non-local reaction-diffusion equations arise naturally to account for diffusions involving jumps rather than local diffusions related to Brownian motion. In ecology, long distance dispersal require such frameworks. In this work we study a one-dimensional non-local reaction-diffusion equation with bistable and monostable type reactions. The heterogeneity here from due to the presence of a barrie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013