Nitrogen self-doped porous carbon from surplus sludge as metal-free electrocatalysts for oxygen reduction reactions.

نویسندگان

  • Kai Zhou
  • Weijia Zhou
  • Xiaojun Liu
  • Yan Wang
  • Jinquan Wan
  • Shaowei Chen
چکیده

Nitrogen self-doped porous carbon was prepared by calcination treatment of surplus sludge, a toxic byproduct from microbial wastewater treatments, and exhibited a mesoporous structure, as manifested in scanning and transmission electron microscopic measurements. Nitrogen adsorption/desorption studies showed that the porous carbon featured a BET surface area as high as 310.8 m(2)/g and a rather broad range of pore size from 5 to 80 nm. X-ray photoelectron spectroscopic studies confirmed the incorporation of nitrogen into the graphitic matrix forming pyridinic and pyrrolic moieties. Interestingly, the obtained porous carbon exhibited apparent electrocatalytic activity in oxygen reduction in alkaline media, with the optimal temperatures identified within the range of 600 to 800 °C, where the number of electron transfers involved in oxygen reduction was estimated to be 3.5 to 3.7 and the performance was rather comparable to leading literature results as a consequence of deliberate engineering of the graphitic matrix by nitrogen doping.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions.

Nitrogen-doped graphitic porous carbons (NGPCs) have been synthesized by using a zeolite-type nanoscale metal-organic framework (NMOF) as a self-sacrificing template, which simultaneously acts as both the carbon and nitrogen sources in a facile carbonization process. The NGPCs not only retain the nanopolyhedral morphology of the parent NMOF, but also possess rich nitrogen, high surface area and...

متن کامل

Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts

Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...

متن کامل

Facile Synthesis of N, S-Doped Graphene from Sulfur Trioxide Pyridine Precursor for the Oxygen Reduction Reaction

In the work presented here, nitrogen and sulfur co doped on porous graphene was synthesized using pyrolysis at 900°C for 2h and the hydrothermal technique at 180°C for 24h as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. All the materials have been characterized by Scanning Electron Microscopy (SEM) and X-ray photo-electron spectroscopy (XPS). Moreov...

متن کامل

Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction

The nitrogen (N), phosphorus (P) and sulphur (S) ternary-doped metal-free porous carbon materials have been successfully synthesized using MOFs as templates (denoted as NPS-C-MOF-5) for oxygen reduction reaction (ORR) for the first time. The influences of porous carbons from carbonizing different MOFs and carbonization temperature on ORR have been systematically investigated. Due to the synergi...

متن کامل

Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction.

Development of cheap, abundant and metal-free N-doped carbon materials as high efficiency oxygen reduction electrocatalysts is crucial for their practical applications in future fuel cell devices. Here, three-dimensional (3D) N-doped porous carbon (NPC) materials have been successfully developed by a simple template-assisted (e.g., SiO2 spheres) high temperature pyrolysis approach using shrimp-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 17  شماره 

صفحات  -

تاریخ انتشار 2014