Role of CO in attenuated vasoconstrictor reactivity of mesenteric resistance arteries after chronic hypoxia.
نویسندگان
چکیده
Chronic hypoxia (CH) is associated with a persistent reduction in systemic vasoconstrictor reactivity. Experiments on aortic ring segments isolated from CH rats suggest that enhanced vascular expression of heme oxygenase (HO) and resultant production of the vasodilator carbon monoxide (CO) may underlie this attenuated vasoreactivity after hypoxia. Similar to the aorta, small arteries from CH rats exhibit blunted reactivity; however, the regulatory role of CO in the resistance vasculature has not been established. Therefore, we examined the significance of HO activity on responsiveness to phenylephrine (PE) in the mesenteric circulation of control and CH rats. To document that the mesenteric bed demonstrates reduced reactivity after CH, we determined the vasoconstrictor responses of conscious, chronically instrumented male Sprague-Dawley rats to PE under control conditions and then immediately after exposure to 48 h CH (0.5 atm). All rats showed reduced mesenteric vasoconstriction to PE after CH. To examine the role of CO in reduced reactivity, small mesenteric arteries (100-200 microm intraluminal diameter) from control and 48-h CH rats were isolated and mounted on glass cannulas, pressurized to 60 mmHg and superfused with increasing concentrations of PE under normoxic conditions. Similar to the intact circulation, vessels from CH rats exhibited reduced vasoconstrictor sensitivity to PE compared with controls that persisted in the presence of nitric oxide synthase inhibition. The HO inhibitor, zinc protoporphyrin IX (5 microM) enhanced reactivity only in CH vessels. Additionally, a range of concentrations of the HO substrate heme-L-lysinate caused vasodilation in CH vessels but not in controls. Thus we conclude that CO contributes a significant vasodilator influence in resistance vessels after CH that may account for diminished vasoconstrictor responsiveness under these conditions.
منابع مشابه
Increased nitric oxide production following chronic hypoxia contributes to attenuated systemic vasoconstriction.
Attenuated vasoconstrictor reactivity following chronic hypoxia (CH) is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and diminished intracellular [Ca(2+)]. We tested the hypothesis that increased production of nitric oxide (NO) after CH contributes to blunted vasoconstrictor responsiveness. We found that basal NO production of mesenteric arteries fro...
متن کاملDevelopment of vasomotor responses in fetal mesenteric arteries.
Changes in mesenteric arterial diameters were studied using intravital microscopy in chick fetuses at days 13 and 17 of incubation, corresponding to 0.6 and 0.8 fetal incubation time, both during 5 min of hypoxia followed by 5 min of reoxygenation and after topical administration of increasing concentrations (10(-6)-10(-2) M) of norepinephrine (NE) and acetylcholine (ACh). Baseline diameters of...
متن کاملEffect of estrogen replacement on vasoconstrictor responses in rat mesenteric arteries.
Recent studies have shown that estrogen can increase endothelial nitric oxide synthase expression and/or activity and that nitric oxide may play a role in attenuating vasoconstrictor responses. Yet there are still controversies in this field. Our hypothesis was that the role of nitric oxide in modulating vasoconstrictor responses in estrogen-replaced animals depends on the agonist. The aim of t...
متن کامل48-h Hypoxic exposure results in endothelium-dependent systemic vascular smooth muscle cell hyperpolarization.
Chronic hypoxia (CH) results in reduced sensitivity to vasoconstrictors in conscious rats that persists upon restoration of normoxia. We hypothesized that this effect is due to endothelium-dependent hyperpolarization of vascular smooth muscle (VSM) cells after CH. VSM cell resting membrane potential was determined for superior mesenteric artery strips isolated from CH rats (PB = 380 Torr for 48...
متن کاملA Vasoactive Role for Endogenous Relaxin in Mesenteric Arteries of Male Mice
The peptide hormone relaxin has striking effects on the vascular system. Specifically, endogenous relaxin treatment reduces myogenic reactivity through nitric oxide (NO)-mediated vasorelaxation and increases arterial compliance in small resistance arteries. However, less is known about the vascular roles of endogenous relaxin, particularly in males. Therefore, we used male wild-type (Rln+/+) an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 282 1 شماره
صفحات -
تاریخ انتشار 2002