Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides.
نویسندگان
چکیده
Light emission in two-dimensional (2D) transition metal dichalcogenides (TMDs) changes significantly with the number of layers and stacking sequence. While the electronic structure and optical absorption are well understood in 2D-TMDs, much less is known about exciton dynamics and radiative recombination. Here, we show first-principles calculations of intrinsic exciton radiative lifetimes at low temperature (4 K) and room temperature (300 K) in TMD monolayers with the chemical formula MX2 (X = Mo, W, and X = S, Se), as well as in bilayer and bulk MoS2 and in two MX2 heterobilayers. Our results elucidate the time scale and microscopic origin of light emission in TMDs. We find radiative lifetimes of a few picoseconds at low temperature and a few nanoseconds at room temperature in the monolayers and slower radiative recombination in bulk and bilayer than in monolayer MoS2. The MoS2/WS2 and MoSe2/WSe2 heterobilayers exhibit very long-lived (∼20-30 ns at room temperature) interlayer excitons constituted by electrons localized on the Mo-based and holes on the W-based monolayer. The wide radiative lifetime tunability, together with the ability shown here to predict radiative lifetimes from computations, hold unique potential to manipulate excitons in TMDs and their heterostructures for application in optoelectronics and solar energy conversion.
منابع مشابه
Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2
We present results on the radiative lifetimes of excitons and trions in a monolayer of metal dichalcogenide MoS2. The small exciton radius and the large exciton optical oscillator strength result in radiative lifetimes in the 0.18–0.30 ps range for excitons that have small in-plane momenta and couple to radiation. Average lifetimes of thermally distributed excitons depend linearly on the excito...
متن کاملRadiative and Non-Radiative Exciton Energy Transfer in Monolayers of Two-Dimensional Transition Metal Dichalcogenides
We present results on the rates of interlayer energy transfer between excitons in two-dimensional transition metal dichalcogenides (TMDs). We consider both radiative (mediated by real photons) and non-radiative (mediated by virtual photons) mechanisms of energy transfer using a unified Green’s function approach that takes into account modification of the exciton energy dispersions as a result o...
متن کاملIntrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides
The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising fr...
متن کاملExciton polaritons in transition-metal dichalcogenides and their direct excitation via energy transfer
Excitons, composite electron-hole quasiparticles, are known to play an important role in optoelectronic phenomena in many semiconducting materials. Recent experiments and theory indicate that the band-gap optics of the newly discovered monolayer transition-metal dichalcogenides (TMDs) is dominated by tightly bound valley excitons. The strong interaction of excitons with long-range electromagnet...
متن کاملOptical absorption by Dirac excitons in single-layer transition-metal dichalcogenides
We develop an analytically solvable model able to qualitatively explain nonhydrogenicexciton spectra observed recently in two-dimensional (20) semiconducting transition-metal dichalcogenides. Our exciton Hamiltonian explicitly includes additional angular momentum associated with the pseudospin degree of freedom unavoidable in 20 semiconducting materials with honeycomb structure. We claim that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2015