NADH oxidase and alkyl hydroperoxide reductase subunit C (peroxiredoxin) from Amphibacillus xylanus form an oligomeric assembly
نویسندگان
چکیده
The NADH oxidase-peroxiredoxin (Prx) system of Amphibacillus xylanus reduces hydroperoxides with the highest turnover rate among the known hydroperoxide-scavenging enzymes. The high electron transfer rate suggests that there exists close interaction between NADH oxidase and Prx. Variant enzyme experiments indicated that the electrons from β-NADH passed through the secondary disulfide, Cys128-Cys131, of NADH oxidase to finally reduce Prx. We previously reported that ionic strength is essential for a system to reduce hydroperoxides. In this study, we analyzed the effects of ammonium sulfate (AS) on the interaction between NADH oxidase and Prx by surface plasmon resonance analysis. The interaction between NADH oxidase and Prx was observed in the presence of AS. Dynamic light scattering assays were conducted while altering the concentration of AS and the ratio of NADH oxidase to Prx in the solutions. The results revealed that the two proteins formed a large oligomeric assembly, the size of which depended on the ionic strength of AS. The molecular mass of the assembly converged at approximately 300 kDa above 240 mM AS. The observed reduction rate of hydrogen peroxide also converged at the same concentration of AS, indicating that a complex formation is required for activation of the enzyme system. That the complex generation is dependent on ionic strength was confirmed by ultracentrifugal analysis, which resulted in a signal peak derived from a complex of NADH oxidase and Prx (300 mM AS, NADH oxidase: Prx = 1:10). The complex formation under this condition was also confirmed structurally by small-angle X-ray scattering.
منابع مشابه
Hydrogen peroxide-forming NADH oxidase belonging to the peroxiredoxin oxidoreductase family: existence and physiological role in bacteria.
Amphibacillus xylanus and Sporolactobacillus inulinus NADH oxidases belonging to the peroxiredoxin oxidoreductase family show extremely high peroxide reductase activity for hydrogen peroxide and alkyl hydroperoxides in the presence of the small disulfide redox protein, AhpC (peroxiredoxin). In order to investigate the distribution of this enzyme system in bacteria, 15 bacterial strains were sel...
متن کاملA flavoprotein functional as NADH oxidase from Amphibacillus xylanus Ep01: purification and characterization of the enzyme and structural analysis of its gene.
Amphibacillus xylanus Ep01, a facultative anaerobe we recently isolated, shows rapid aerobic growth even though it lacks a respiratory pathway. Thus, the oxidative consumption of NADH, produced during glycolysis and pyruvate oxidation, should be especially important for maintenance of intracellular redox balance in this bacterium. We purified a flavoprotein functional as NADH oxidase from aerob...
متن کاملA hydrogen peroxide-forming NADH oxidase that functions as an alkyl hydroperoxide reductase in Amphibacillus xylanus.
The Amphibacillus xylanus NADH oxidase, which catalyzes the reduction of oxygen to hydrogen peroxide with beta-NADH, can also reduce hydrogen peroxide to water in the presence of free flavin adenine dinucleotide (FAD) or the small disulfide-containing Salmonella enterica AhpC protein. The enzyme has two disulfide bonds, Cys128-Cys131 and Cys337-Cys340, which can act as redox centers in addition...
متن کاملPurification and analysis of a flavoprotein functional as NADH oxidase from Amphibacillus xylanus overexpressed in Escherichia coli.
The gene encoding the Amphibacillus xylanus flavoprotein has been cloned into pTTQ18 and overexpressed in Escherichia coli. The recombinant enzyme has been purified to homogeneity yielding 15 mg of pure enzyme/liter of cell culture. Recombinant flavoprotein is fully active and has an absorption spectrum identical to that of the enzyme purified from A. xylanus. The N-terminal sequence analysis a...
متن کاملFlavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins.
The two components, AhpF and AhpC, of the Salmonella typhimurium alkyl hydroperoxide reductase enzyme system have been overexpressed and purified from Escherichia coli for investigations of their catalytic properties. Recombinant proteins were isolated in high yield (25-33 mg per liter of bacterial culture) and were shown to impart a high degree of protection against killing by cumene hydropero...
متن کامل