The miR-199-dynamin regulatory axis controls receptor-mediated endocytosis.
نویسندگان
چکیده
Small non-coding RNAs (microRNAs) are important regulators of gene expression that modulate many physiological processes; however, their role in regulating intracellular transport remains largely unknown. Intriguingly, we found that the dynamin (DNM) genes, a GTPase family of proteins responsible for endocytosis in eukaryotic cells, encode the conserved miR-199a and miR-199b family of miRNAs within their intronic sequences. Here, we demonstrate that miR-199a and miR-199b regulate endocytic transport by controlling the expression of important mediators of endocytosis such as clathrin heavy chain (CLTC), Rab5A, low-density lipoprotein receptor (LDLR) and caveolin-1 (Cav-1). Importantly, miR-199a-5p and miR-199b-5p overexpression markedly inhibits CLTC, Rab5A, LDLR and Cav-1 expression, thus preventing receptor-mediated endocytosis in human cell lines (Huh7 and HeLa). Of note, miR-199a-5p inhibition increases target gene expression and receptor-mediated endocytosis. Taken together, our work identifies a new mechanism by which microRNAs regulate intracellular trafficking. In particular, we demonstrate that the DNM, miR-199a-5p and miR-199b-5p genes act as a bifunctional locus that regulates endocytosis, thus adding an unexpected layer of complexity in the regulation of intracellular trafficking.
منابع مشابه
A Feedback Loop between Dynamin and Actin Recruitment during Clathrin-Mediated Endocytosis
Clathrin-mediated endocytosis proceeds by a sequential series of reactions catalyzed by discrete sets of protein machinery. The final reaction in clathrin-mediated endocytosis is membrane scission, which is mediated by the large guanosine triophosphate hydrolase (GTPase) dynamin and which may involve the actin-dependent recruitment of N-terminal containing BIN/Amphiphysin/RVS domain containing ...
متن کاملDynamin:Gtp Controls the Formation of Constricted Coated Pits, the Rate Limiting Step in Clathrin-Mediated Endocytosis
The GTPase dynamin is essential for receptor-mediated endocytosis, but its function remains controversial. A domain of dynamin, termed the GTPase effector domain (GED), controls dynamin's high stimulated rates of GTP hydrolysis by functioning as an assembly-dependent GAP. Dyn(K694A) and dyn(R725A) carry point mutations within GED resulting in reduced assembly stimulated GTPase activity. Biotiny...
متن کاملCrosstalk between Akt/GSK3b signaling and dynamin-1 regulates clathrin-mediated endocytosis
Clathrin-mediated endocytosis (CME) regulates signaling from the plasma membrane. Analysis of clathrin-coated pit (CCP) dynamics led us to propose the existence of a rate-limiting, regulatory step(s) that monitor the fidelity of early stages in CCP maturation. Here we show that nascent endocytic vesicles formed in mutant cells displaying rapid, dysregulated CME are defective in early endosomal ...
متن کاملCrosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis.
Clathrin-mediated endocytosis (CME) regulates signaling from the plasma membrane. Analysis of clathrin-coated pit (CCP) dynamics led us to propose the existence of a rate-limiting, regulatory step(s) that monitor the fidelity of early stages in CCP maturation. Here we show that nascent endocytic vesicles formed in mutant cells displaying rapid, dysregulated CME are defective in early endosomal ...
متن کاملMyristyl trimethyl ammonium bromide and octadecyl trimethyl ammonium bromide are surface-active small molecule dynamin inhibitors that block endocytosis mediated by dynamin I or dynamin II.
Dynamin is a GTPase enzyme involved in membrane constriction and fission during endocytosis. Phospholipid binding via its pleckstrin homology domain maximally stimulates dynamin activity. We developed a series of surface-active small-molecule inhibitors, such as myristyl trimethyl ammonium bromide (MiTMAB) and octadecyltrimethyl ammonium bromide (OcTMAB), and we now show MiTMAB targets the dyna...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 128 17 شماره
صفحات -
تاریخ انتشار 2015