A Characterization of Positive Self-adjoint Extensions and Its Application to Ordinary Differential Operators

نویسندگان

  • GUANGSHENG WEI
  • YAOLIN JIANG
چکیده

A new characterization of the positive self-adjoint extensions of symmetric operators, T0, is presented, which is based on the Friedrichs extension of T0, a direct sum decomposition of domain of the adjoint T ∗ 0 and the boundary mapping of T ∗ 0 . In applying this result to ordinary differential equations, we characterize all positive self-adjoint extensions of symmetric regular differential operators of order 2n in terms of boundary conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjoint and self - adjoint differential operators on graphs ∗

A differential operator on a directed graph with weighted edges is characterized as a system of ordinary differential operators. A class of local operators is introduced to clarify which operators should be considered as defined on the graph. When the edge lengths have a positive lower bound, all local self-adjoint extensions of the minimal symmetric operator may be classified by boundary condi...

متن کامل

Functional Determinants for General Self-adjoint Extensions of Laplace-type Operators Resulting from the Generalized Cone

In this article we consider the zeta regularized determinant of Laplace-type operators on the generalized cone. For arbitrary self-adjoint extensions of a matrix of singular ordinary differential operators modelled on the generalized cone, a closed expression for the determinant is given. The result involves a determinant of an endomorphism of a finite-dimensional vector space, the endomorphism...

متن کامل

Factorization of self-adjoint ordinary differential equations

Keyword: Factorization method Self-adjoint differential equations Eigenvalue problems This paper deals with the factorization of self-adjoint differential operators Lð2nÞ 1⁄4 1 q d n dx qb d n dx , and their spectral type differential equations. Sufficient conditions of factorization are reported. A large class of differential operators and equations that can be factorized is obtained. The fact...

متن کامل

Complex Symplectic Spaces and Boundary Value Problems

This paper presents a review and summary of recent research on the boundary value problems for linear ordinary and partial differential equations, with special attention to the investigations of the current authors emphasizing the applications of complex symplectic spaces. In the first part of the previous century, Stone and von Neumann formulated the theory of self-adjoint extensions of symmet...

متن کامل

A note on $lambda$-Aluthge transforms of operators

Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and onl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005