Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials.
نویسندگان
چکیده
Titanium nitride (TiN) is a plasmonic material having optical properties resembling gold. Unlike gold, however, TiN is complementary metal oxide semiconductor-compatible, mechanically strong, and thermally stable at higher temperatures. Additionally, TiN exhibits low-index surfaces with surface energies that are lower than those of the noble metals which facilitates the growth of smooth, ultrathin crystalline films. Such films are crucial in constructing low-loss, high-performance plasmonic and metamaterial devices including hyperbolic metamaterials (HMMs). HMMs have been shown to exhibit exotic optical properties, including extremely high broadband photonic densities of states (PDOS), which are useful in quantum plasmonic applications. However, the extent to which the exotic properties of HMMs can be realized has been seriously limited by fabrication constraints and material properties. Here, we address these issues by realizing an epitaxial superlattice as an HMM. The superlattice consists of ultrasmooth layers as thin as 5 nm and exhibits sharp interfaces which are essential for high-quality HMM devices. Our study reveals that such a TiN-based superlattice HMM provides a higher PDOS enhancement than gold- or silver-based HMMs.
منابع مشابه
Titanium nitride as a plasmonic material for visible and near-infrared wavelengths
The search for alternative plasmonic materials with improved optical properties, easier fabrication and integration capabilities over those of the traditional materials such as silver and gold could ultimately lead to real-life applications for plasmonics and metamaterials. In this work, we show that titanium nitride could perform as an alternative plasmonic material in the visible and near-inf...
متن کاملEffective third-order nonlinearities in metallic refractory titanium nitride thin films
Nanophotonic devices offer an unprecedented ability to concentrate light into small volumes which can greatly increase nonlinear effects. However, traditional plasmonic materials suffer from low damage thresholds and are not compatible with standard semiconductor technology. Here we study the nonlinear optical properties in the novel refractory plasmonic material titanium nitride using the Z-sc...
متن کاملHigh aspect ratio titanium nitride trench structures as plasmonic biosensor
High aspect ratio titanium nitride (TiN) grating structures are fabricated by the combination of deep reactive ion etching (DRIE) and atomic layer deposition (ALD) techniques. TiN is deposited at 500 ◦C on a silicon trench template. Silicon between vertical TiN layers is selectively etched to fabricate the high aspect ratio TiN trenches with the pitch of 400 nm and height of around 2.7 μm. Diel...
متن کاملMetamaterials and Transformation Optics for Single-photon Emitters
We have experimentally demonstrated the broadband enhancement of single-photon emission from nanodiamond NV centers coupled to planar multilayer metamaterial with hyperbolic dispersion. A tapered metamaterial waveguide for efficient outcoupling of high-k metamaterial modes has been numerically studied and fabricated. Introduction: The major thrust of research in quantum photonics is to build qu...
متن کاملOptimization of sputtered titanium nitride as a tunable metal for plasmonic applications
Alternative materials for plasmonic devices have garnered much recent interest. A promising candidate material is titanium nitride. Although there is a substantial body of work on the formation of this material, its use for plasmonic applications requires a more systematic and detailed optical analysis than has previously been carried out. This paper describes an initial optimization of sputter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 21 شماره
صفحات -
تاریخ انتشار 2014