Multifractal formalism for self-similar measures with weak separation condition
نویسنده
چکیده
For any self-similar measure μ on R satisfying the weak separation condition, we show that there exists an open ball U0 with μ(U0) > 0 such that the distribution of μ, restricted on U0, is controlled by the products of a family of non-negative matrices, and hence μ|U0 satisfies a kind of quasi-product property. Furthermore, the multifractal formalism for μ|U0 is valid on the whole range of dimension spectrum, regardless of whether there are phase transitions. Moreover the dimension spectra of μ and μ|U0 coincide for q ≥ 0. This result unifies and improves many of the recent works on the multifractal structure of self-similar measures with overlaps. RÉSUMÉ. On montre que pour toute mesure auto-similaire sur R satisfaisant la condition de séparation faible, il existe une boule U0 telle que μ(B0) > 0 ainsi qu’une famille finie F de matrices positives telles que μ|U0 , la distribution de μ restreinte à B0, soit contrôlée par des produits d’éléments de F , de sorte que μ|U0 satisfasse une propriété de type quasi-multiplicativité. De plus, le formalisme multifractal est valide pour μ|U0 sur tout l’intervalle de définition du spectre de singularités, qu’il y ait ou non des transitions de phases. Enfin, les spectres de singularités de μ et μ|U0 cöıncident pour q ≥ 0. Ces résultats unifient et améliorent un grand nombre de travaux récents portant sur la structure multifractale des mesures auto-similaires avec recouvrements. 1991 Mathematics Subject Classification. 28A78, 28A80.
منابع مشابه
Multifractal Measures and a Weak Separation Condition
We define a new separation property on the family of contractive similitudes that allows certain overlappings. This property is weaker than the open set condition of Hutchinson. It includes the well-known class of infinite Bernoulli convolutions associated with the P.V. numbers and the solutions of the two-scale dilation equations. Our main purpose in this paper is to prove the multifractal for...
متن کاملTo appear in Israel Journal of Mathematics LYAPUNOV EXPONENTS FOR PRODUCTS OF MATRICES AND MULTIFRACTAL ANALYSIS. PART II: NON-NEGATIVE MATRICES
We continue the study in [11, 14] on the upper Lyapunov exponents for products of matrices. Here the matrix function M(x) is only assumed to be non-negative. In general, the variational formula about Lyapunov exponents we obtained in part I does not hold in this setting. Anyway we focus our interest on a special case where M(x) takes finite values M1, . . ., Mm. In this case we prove the variat...
متن کاملA modified multifractal formalism for a class of self-similar measures with overlap
The multifractal spectrum of a Borel measure μ in R is defined as fμ(α) = dimH { x : lim r→0 logμ(B(x, r)) log r = α }
متن کاملMultifractal Analysis of Bernoulli Convolutions Associated with Salem Numbers
We consider the multifractal structure of the Bernoulli convolution νλ, where λ−1 is a Salem number in (1, 2). Let τ(q) denote the L spectrum of νλ. We show that if α ∈ [τ ′(+∞), τ ′(0+)], then the level set E(α) := { x ∈ R : lim r→0 log νλ([x− r, x+ r]) log r = α } is non-empty and dimH E(α) = τ∗(α), where τ∗ denotes the Legendre transform of τ . This result extends to all self-conformal measu...
متن کاملMultifractal Processes
This paper has two main objectives. First, it develops the multifractal formalism in a context suitable for both, measures and functions, deterministic as well as random, thereby emphasizing an intuitive approach. Second, it carefully discusses several examples, such as the binomial cascades and self-similar processes with a special eye on the use of wavelets. Particular attention is given to a...
متن کامل