Nonlinear semelparous leslie models.
نویسنده
چکیده
In this paper we consider the bifurcations that occur at the trivial equilibrium of a general class of nonlinear Leslie matrix models for the dynamics of a structured population in which only the oldest class is reproductive. Using the inherent net reproductive number n as a parameter, we show that a global branch of positive equilibria bifurcates from the trivial equilibrium at n = 1 despite the fact that the bifurcation is nongeneric. The bifurcation can be either supercritical or subcritical, but unlike the case of a generic transcritical bifurcation in iteroparous models, the stability of the bifurcating positive equilibria is not determined by the direction of bifurcation. In addition we show that a branch of single-class cycles also bifurcates from the trivial equilibrium at n = 1. In the case of two population classes, either the bifurcating equilibria or the bifurcating cycles are stable (but not both) depending on the relative strengths of the inter- and intra-class competition. Strong inter-class competition leads to stable cycles in which the two population classes are temporally separated. In the case of three or more classes the bifurcating cycles often lie on a bifurcating invariant loop whose structure is that of a cycle chain consisting of the different phases of a periodic cycle connected by heteroclinic orbits. Under certain circumstances, these bifurcating loops are attractors.
منابع مشابه
Stable bifurcations in semelparous Leslie models.
In this paper, we consider nonlinear Leslie models for the dynamics of semelparous age-structured populations. We establish stability and instability criteria for positive equilibria that bifurcate from the extinction equilibrium at R (0)=1. When the bifurcation is to the right (forward or super-critical), the criteria consist of inequalities involving the (low-density) between-class and within...
متن کاملThree stage semelparous Leslie models.
Nonlinear Leslie matrix models have a long history of use for modeling the dynamics of semelparous species. Semelparous models, as do nonlinear matrix models in general, undergo a transcritical equilibrium bifurcation at inherent net reproductive number R(0) = 1 where the extinction equilibrium loses stability. Semelparous models however do not fall under the purview of the general theory becau...
متن کاملAge-Structured Lotka-Volterra Equations for Multiple Semelparous Populations
This paper derives a Lotka–Volterra equation with a certain symmetry from a coupled nonlinear Leslie matrix model for interacting semelparous species. The global analysis focuses on the special case where the system is composed of two species, one species having two age-classes and the other species having a single age-class. This analysis almost completely describes its global dynamics and pro...
متن کاملSingle-class orbits in nonlinear Leslie matrix models for semelparous populations.
The dynamics of a general nonlinear Leslie matrix model for a semelparous population is investigated. We are especially concerned with the attractivity of the single-class state, in which all but one cohort (or year-class) are missing. Our result shows that the single-class state is attractive if inter-class competition is severe. Conversely, if intra-class competition is severe, the single-cla...
متن کاملEvolutionary Dynamics of a Multi-trait Semelparous Model
We consider a multi-trait evolutionary (game theoretic) version of a two class (juvenile-adult) semelparous Leslie model. We prove the existence of both a continuum of positive equilibria and a continuum of synchronous 2-cycles as the result of a bifurcation that occurs from the extinction equilibrium when the net reproductive number 0 increases through 1. We give criteria for the direction of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical biosciences and engineering : MBE
دوره 3 1 شماره
صفحات -
تاریخ انتشار 2006