Purification and biochemical characterization of tellurite-reducing activities from Thermus thermophilus HB8.

نویسندگان

  • M Chiong
  • E González
  • R Barra
  • C Vásquez
چکیده

Cell-free extracts of Thermus thermophilus HB8 catalyze the in vitro, NADH-dependent reduction of potassium tellurite (K2TeO3). Three different protein fractions with tellurite-reducing activities were identified. Two exhibited high molecular weight and were composed of at least two different polypeptides. The protein in the third fraction was purified to homogeneity and had a single polypeptide chain of 53 to 54 kilodaltons, with an isoelectric point of 8.1. Each enzyme was thermostable, the temperature optimum was 75 degrees C, and 30 mM NaCl, 1.5 M urea, or 0.004% sodium dodecyl sulfate caused 50% inhibition of the enzymes. However, 2% Triton X-100 did not have an inhibitory effect. The enzymes were also able to catalyze the reduction of sodium selenite and sodium sulfite in vitro. NADH was replaceable by NADPH. Divalent cations, such as Ca2+ and Ba2+, had no effect on the activity, while similar concentrations of Zn2+, Ni2+, and Cu2+ abolished the activity. This reductase activity could enable these bacteria both to reduce K2TeO3 and to increase their tolerance toward this salt.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance of Thermus spp. to Potassium Tellurite.

Two members of the genus Thermus were examined for their resistance to toxic inorganic compounds. They both proved to be fairly resistant to tellurite and selenite and to many other heavy metal salts. Cell extracts of Thermus thermophilus HB8 and of T. flavus AT-62 catalyze the reduction of K(2)TeO(3) in a reaction which is dependent on NADH oxidation.

متن کامل

Purification and initial characterization of RNA polymerase from Thermus thermophilus strain HB8.

Utilizing a novel and rapid two-column purification procedure, the DNA-dependent RNA polymerase (RNAP) from the thermophile, Thermus thermophilus HB8, was purified to electrophoretic homogeneity with a recovery of 65% (as determined by RNAP activity) in less than 2 days. The purified enzyme was characterized using DNA containing the lambdaP(R) promoter. KMnO(4) footprinting, abortive initiation...

متن کامل

Comparative characterization of the oah2 gene homologous to the oah1 of Thermus thermophilus HB8.

The oah2 gene homologous to the oah1 of Thermus thermophilus HB8 was cloned and sequenced. It comprised 1,236 bp encoding a protein of 412 amino acid residues and was overexpressed. The gene product, also having O-acetyl-L-homoserine sulfhydrylase (EC 4.2.99.10) activity, was purified to homogeneity and characterized comparatively with the oah1 product. The two proteins shared many characterist...

متن کامل

Characterization of DNA polymerase X from Thermus thermophilus HB8 reveals the POLXc and PHP domains are both required for 3′–5′ exonuclease activity

The X-family DNA polymerases (PolXs) comprise a highly conserved DNA polymerase family found in all kingdoms. Mammalian PolXs are known to be involved in several DNA-processing pathways including repair, but the cellular functions of bacterial PolXs are less known. Many bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain at their C-termini in addition to a PolX core (POLXc...

متن کامل

Characterization of crystals of tetrameric manganese superoxide dismutase from Thermus thermophilus HB8.

The tetrameric manganese superoxide dismutase from the extreme thermophile Thermus thermophilus HB8 crystallizes in space group P41212 (or its enantiomorph) with a = b = 147.5 A, c = 55.9 A. The diffraction patterns extent to 1.4 A, and the crystals are very resistant to decay induced by x-irradiation. Measurements of the crystal density in Ficoll gradients are consistent with an asymmetric uni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 170 7  شماره 

صفحات  -

تاریخ انتشار 1988