SLOMS: A Privacy Preserving Data Publishing Method for Multiple Sensitive Attributes Microdata

نویسندگان

  • Jianmin Han
  • Fangwei Luo
  • Jianfeng Lu
  • Hao Peng
چکیده

Multi-dimension bucketization is a typical method to anonymize multiple sensitive attributes. However, the method leads to low data utility when microdata have more sensitive attributes. In addition, the methods do not generalize quasi-identifiers, which make the anonymous data vulnerable to suffer from linked attacks. To address the problems, the paper proposes a SLOMS method. The method vertically partitions the multiple sensitive attributes into several tables and bucketizes each sensitive attribute table to implement l-diversity. At the same time, it generalizes the quasi-identifiers to implement k-anonymity. The paper also proposes a MSB-KACA algorithm to anonymize microdata with multiple sensitive attributes by SLOMS. Experiments show that SLOMS can generate anonymous tables with less suppression ratio and less distortion compared with generalization and MSB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Techniques for Preserving Microdata Using Slicing

Privacy preserving publishing is the kind of techniques to apply privacy to collected vast amount of data. One of the recent problem prevailing is in the field of data publication. The data often consist of personally identifiable information so releasing such data consists of privacy problem. Several anonymization techniques such as generalization and bucketization have been designed for priva...

متن کامل

ارایه یک روش جدید انتشار داده‌ها با حفظ محرمانگی با هدف بهبود دقّت طبقه‌‌بندی روی داده‌های گمنام

Data collection and storage has been facilitated by the growth in electronic services, and has led to recording vast amounts of personal information in public and private organizations databases. These records often include sensitive personal information (such as income and diseases) and must be covered from others access. But in some cases, mining the data and extraction of knowledge from thes...

متن کامل

A Novel Anonymity Algorithm for Privacy Preserving in Publishing Multiple Sensitive Attributes

Publishing the data with multiple sensitive attributes brings us greater challenge than publishing the data with single sensitive attribute in the area of privacy preserving. In this study, we propose a novel privacy preserving model based on k-anonymity called (α, β, k)-anonymity for databases. (α, β, k)anonymity can be used to protect data with multiple sensitive attributes in data publishing...

متن کامل

Publishing High-Dimensional Micro Data Using Anonymization Technique

Now a day’s society is experiencing very good growth in the count and variety of data collections having person-specific information as network connectivity, computer technology & disk storage space become increasingly affordable. Large databases is in use today’s society. The large amount of data available means that it is helpful to learn lot of individual information from public data. While ...

متن کامل

(p+, α)-sensitive k-anonymity: A new enhanced privacy protection model

Publishing data for analysis from a microdata table containing sensitive attributes, while maintaining individual privacy, is a problem of increasing significance today. The k-anonymity model was proposed for privacy preserving data publication. While focusing on identity disclosure, k-anonymity model fails to protect attribute disclosure to some extent. Many efforts are made to enhance the kan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JSW

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013