Multi-robot path planning using co-evolutionary genetic programming

نویسنده

  • Rahul Kala
چکیده

Motion planning for multiple mobile robots must ensure the optimality of the path of each and every robot, as well as overall path optimality, which requires cooperation amongst robots. The paper proposes a solution to the problem, considering different source and goal of each robot. Each robot uses a Grammar based Genetic Programming for figuring the optimal path in a maze-like map, while a master evolutionary algorithm caters to the needs of overall path optimality. Co-operation amongst the individual robots’ evolutionary algorithms ensures generation of overall optimal paths. The other feature of the algorithm includes local optimization using memory based lookup where optimal paths between various crosses in map are stored and regularly updated. Feature called wait for robot is used in place of conventionally used priority based techniques. Experiments are carried out with a number of maps, scenarios, and different robotic speeds. Experimental results confirm the usefulness of the algorithm in a variety of scenarios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning

Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...

متن کامل

Offline Smooth path planning for a mobile robot in dynamic environment using evolutionary multi-objective optimization

This paper studies the path planning problem for mobile robots to move smoothly and safely along a shorter curvature-constrained path in completely known dynamic environments. The cost of travel is defined by an obstacle-avoidance cost, which is designed as a weighted penetration depth to vertices of obstacles, and a length cost. The path is composed of a pre-specified number of cubic spiral se...

متن کامل

Robot Path Planning Using Cellular Automata and Genetic Algorithm

In path planning Problems, a complete description of robot geometry, environments and obstacle are presented; the main goal is routing, moving from source to destination, without dealing with obstacles. Also, the existing route should be optimal. The definition of optimality in routing is the same as minimizing the route, in other words, the best possible route to reach the destination. In most...

متن کامل

Evolutionary Approach for Mobile Robot Path Planning in Complex environment

The shortest/optimal path planning in a static environment is essential for the efficient operation of a mobile robot. Recent advances in robotics and machine intelligence have led to the application of modern optimization method such as the genetic algorithm (GA), to solve the path-planning problem. In this paper, the problem of finding the optimal collision free path in complex environments f...

متن کامل

Path Planning of a 3 DOF Servo-Hydraulic Mechanism Using Genetic Algorithm

The objective of this paper is path planning of a 3 DOF planer robot with hydraulic actuator using genetic algorithm. First the geometric and kinematic parameters of robot were established. The equations of motion are derived by Lagrange method. We proposed the model for proportional valve and hydraulic actuators. Then using the genetic algorithm we minimized the hydraulic energy consumption as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2012