The linear Fokker-Planck equation for the Ornstein-Uhlenbeck process as an (almost) nonlinear kinetic equation for an isolated N-particle system
نویسنده
چکیده
It is long known that the Fokker-Planck equation with prescribed constant coefficients of diffusion and linear friction describes the ensemble average of the stochastic evolutions in velocity space of a Brownian test particle immersed in a heat bath of fixed temperature. Apparently, it is not so well known that the same partial differential equation, but now with constant coefficients which are functionals of the solution itself rather than being prescribed, describes the kinetic evolution (in the N → ∞ limit) of an isolated N-particle system with certain stochastic interactions. Here we discuss in detail this recently discovered interpretation.
منابع مشابه
New Solutions for Fokker-Plank Equation of Special Stochastic Process via Lie Point Symmetries
In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process. This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process.
متن کاملThe linear Fokker-Planck equation of standard Brownian motion as an (almost) nonlinear kinetic equation for an isolated N-particle system
It is long known that the Fokker-Planck equation with prescribed constant coefficients of diffusion and linear friction describes the ensemble average of the stochastic evolutions in velocity space of a Brownian test particle immersed in a heat bath of fixed temperature. Apparently, it is not so well known that the same partial differential equation, but now with constant coefficients which are...
متن کاملDeterministic Simulation of Multi-Beaded Models of Dilute Polymer Solutions
We study the convergence of a nonlinear approximation method introduced in the engineering literature for the numerical solution of a high-dimensional Fokker– Planck equation featuring in Navier–Stokes–Fokker–Planck systems that arise in kinetic models of dilute polymers. To do so, we build on the analysis carried out recently by Le Bris, Lelièvre and Maday (Const. Approx. 30: 621–651, 2009) in...
متن کاملLie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy
In the framework of the statistical mechanics based on the Sharma-Taneja-Mittal entropy we derive a family of nonlinear Fokker-Planck equations characterized by the associated non-increasing Lyapunov functional. This class of equations describes kinetic processes in anomalous mediums where both super-diffusive and sub-diffusive mechanisms arise contemporarily and competitively. We classify the ...
متن کاملOn the master equation approach: linear and nonlinear Fokker–Planck equations
We discuss the relationship between kinetic equations of the Fokker-Planck type (two linear and one non-linear) and the Kolmogorov (a.k.a. master) equations of certain N -body diffusion processes, in the context of Kac’s propagation-of-chaos limit. The linear Fokker-Planck equations are well-known, but here they are derived as a limit N → ∞ of a simple linear diffusion equation on 3N − C-dimens...
متن کامل