Requirements for Transitional Endoplasmic Reticulum Site Structure and Function in Saccharomyces cerevisiae

نویسندگان

  • Polina Shindiapina
  • Charles Barlowe
چکیده

Secretory proteins are exported from the endoplasmic reticulum (ER) at specialized regions known as the transitional ER (tER). Coat protein complex II (COPII) proteins are enriched at tER sites, although the mechanisms underlying tER site assembly and maintenance are not understood. Here, we investigated the dynamic properties of tER sites in Saccharomyces cerevisiae and probed protein and lipid requirements for tER site structure and function. Thermosensitive sec12 and sec16 mutations caused a collapse of tER sites in a manner that depended on nascent secretory cargo. Continual fatty acid synthesis was required for ER export and for normal tER site structure, whereas inhibition of sterol and ceramide synthesis produced minor effects. An in vitro assay to monitor assembly of Sec23p-green fluorescent protein at tER sites was established to directly test requirements. tER sites remained active for approximately 10 min in vitro and depended on Sec12p function. Bulk phospholipids were also required for tER site structure and function in vitro, whereas depletion of phophatidylinositol selectively inhibited coat protein complex II (COPII) budding but not assembly of tER site structures. These results indicate that tER sites persist through relatively stringent treatments in which COPII budding was strongly inhibited. We propose that tER site structures are stable elements that are assembled on an underlying protein and lipid scaffold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Golgi Structure Correlates with Transitional Endoplasmic Reticulum Organization in Pichia pastoris and Saccharomyces cerevisiae

Golgi stacks are often located near sites of "transitional ER" (tER), where COPII transport vesicles are produced. This juxtaposition may indicate that Golgi cisternae form at tER sites. To explore this idea, we examined two budding yeasts: Pichia pastoris, which has coherent Golgi stacks, and Saccharomyces cerevisiae, which has a dispersed Golgi. tER structures in the two yeasts were visualize...

متن کامل

Gating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes

Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...

متن کامل

Signal peptidase and oligosaccharyltransferase interact in a sequential and dependent manner within the endoplasmic reticulum.

We demonstrate that the signal peptides of prepro-alpha-factor and preinvertase must be cleaved before Asn-X-Ser/Thr acceptor tripeptides located near the signal peptides of these precursors can be efficiently glycosylated within the endoplasmic reticulum of the yeast Saccharomyces cerevisiae. The data support a model whereby the interaction of a signal peptide with the membrane prevents an acc...

متن کامل

Computational Modeling of Chaperone Interactions in the Endoplasmic Reticulum of Saccharomyces Cerevisiae

In eukaryotes, the endoplasmic reticulum (ER) acts as a protein gatekeeper for protein folding, maturation, and transport. Molecular chaperones, of the Hsp70 family of proteins, participate in assisting these processes and are essential to cellular function and survival. BiP is the resident chaperone in the ER of Sacchromyces cerevisiae. In this study we have created two deterministic models to...

متن کامل

mBet3p is required for homotypic COPII vesicle tethering in mammalian cells

TRAPPI is a large complex that mediates the tethering of COPII vesicles to the Golgi (heterotypic tethering) in the yeast Saccharomyces cerevisiae. In mammalian cells, COPII vesicles derived from the transitional endoplasmic reticulum (tER) do not tether directly to the Golgi, instead, they appear to tether to each other (homotypic tethering) to form vesicular tubular clusters (VTCs). We show t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2010