Augmenting Dual Decomposition for MAP Inference

نویسندگان

  • Andre F.T. Martins
  • Noah A. Smith
  • Eric P. Xing
  • Mario A. T. Figueiredo
  • André F. T. Martins
  • Pedro M. Q. Aguiar
  • Mário A. T. Figueiredo
چکیده

In this paper, we propose combining augmented Lagrangian optimization with the dual decomposition method to obtain a fast algorithm for approximate MAP (maximum a posteriori) inference on factor graphs. We also show how the proposed algorithm can efficiently handle problems with (possibly global) structural constraints. The experimental results reported testify for the state-of-the-art performance of the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposition Bounds for Marginal MAP

Marginal MAP inference involves making MAP predictions in systems defined with latent variables or missing information. It is significantly more difficult than pure marginalization and MAP tasks, for which a large class of efficient and convergent variational algorithms, such as dual decomposition, exist. In this work, we generalize dual decomposition to a generic power sum inference task, whic...

متن کامل

Message Passing for Soft Constraint Dual Decomposition

Dual decomposition provides the opportunity to build complex, yet tractable, structured prediction models using linear constraints to link together submodels that have available MAP inference routines. However, since some constraints might not hold on every single example, such models can often be improved by relaxing the requirement that these constraints always hold, and instead replacing the...

متن کامل

Efficiently Searching for Frustrated Cycles in MAP Inference

Dual decomposition provides a tractable framework for designing algorithms for finding the most probable (MAP) configuration in graphical models. However, for many real-world inference problems, the typical decomposition has a large integrality gap, due to frustrated cycles. One way to tighten the relaxation is to introduce additional constraints that explicitly enforce cycle consistency. Earli...

متن کامل

Dual Decomposition Inference for Graphical Models over Strings

We investigate dual decomposition for joint MAP inference of many strings. Given an arbitrary graphical model, we decompose it into small acyclic sub-models, whose MAP configurations can be found by finite-state composition and dynamic programming. We force the solutions of these subproblems to agree on overlapping variables, by tuning Lagrange multipliers for an adaptively expanding set of var...

متن کامل

Dual Decomposition for Joint Discrete-Continuous Optimization

We analyse convex formulations for combined discrete-continuous MAP inference using the dual decomposition method. As a consquence we can provide a more intuitive derivation for the resulting convex relaxation than presented in the literature. Further, we show how to strengthen the relaxation by reparametrizing the potentials, hence convex relaxations for discrete-continuous inference does not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010