Caveolin-1 is required for contractile phenotype expression by airway smooth muscle cells
نویسندگان
چکیده
Airway smooth muscle cells exhibit phenotype plasticity that underpins their ability to contribute both to acute bronchospasm and to the features of airway remodelling in chronic asthma. A feature of mature, contractile smooth muscle cells is the presence of abundant caveolae, plasma membrane invaginations that develop from the association of lipid rafts with caveolin-1, but the functional role of caveolae and caveolin-1 in smooth muscle phenotype plasticity is unknown. Here, we report a key role for caveolin-1 in promoting phenotype maturation of differentiated airway smooth muscle induced by transforming growth factor (TGF)-β(1). As assessed by Western analysis and laser scanning cytometry, caveolin-1 protein expression was selectively enriched in contractile phenotype airway myocytes. Treatment with TGF-β(1) induced profound increases in the contractile phenotype markers sm-α-actin and calponin in cells that also accumulated abundant caveolin-1; however, siRNA or shRNAi inhibition of caveolin-1 expression largely prevented the induction of these contractile phenotype marker proteins by TGF-β(1). The failure by TGF-β(1) to adequately induce the expression of these smooth muscle specific proteins was accompanied by a strongly impaired induction of eukaryotic initiation factor-4E binding protein(4E-BP)1 phosphorylation with caveolin-1 knockdown, indicating that caveolin-1 expression promotes TGF-β(1) signalling associated with myocyte maturation and hypertrophy. Furthermore, we observed increased expression of caveolin-1 within the airway smooth muscle bundle of guinea pigs repeatedly challenged with allergen, which was associated with increased contractile protein expression, thus providing in vivo evidence linking caveolin-1 expression with accumulation of contractile phenotype myocytes. Collectively, we identify a new function for caveolin-1 in controlling smooth muscle phenotype; this mechanism could contribute to allergic asthma.
منابع مشابه
Antigen-induced airway hyperresponsiveness and obstruction is related to caveolin-1 expression in airway smooth muscle in a guinea pig asthma model
BACKGROUND Caveolin-1 is a fundamental signalling scaffold protein involved in contraction; however, the role of caveolin-1 in airway responsiveness remains unclear. We evaluated the relationship between caveolin-1 expression in airway smooth muscle (ASM) and antigen-induced airway responsiveness and obstruction in a guinea pig asthma model. METHODS Airway obstruction in sensitised guinea pig...
متن کاملEndogenous laminin is required for human airway smooth muscle cell maturation
BACKGROUND Airway smooth muscle (ASM) contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM) components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype i...
متن کاملRole of caveolin-1 in p42/p44 MAP kinase activation and proliferation of human airway smooth muscle.
Chronic airways diseases, including asthma, are associated with an increased airway smooth muscle (ASM) mass, which may contribute to chronic airway hyperresponsiveness. Increased muscle mass is due, in part, to increased ASM proliferation, although the precise molecular mechanisms for this response are not completely clear. Caveolae, which are abundant in smooth muscle cells, are membrane micr...
متن کاملNuclear factor-κB mediates the phenotype switching of airway smooth muscle cells in a murine asthma model.
Airway smooth muscle cells (ASMCs) phenotype modulation, characterized by reversible switching between contractile and proliferative phenotypes, is considered to contribute to airway proliferative diseases such as allergic asthma. Nuclear Factor-κB (NF-κB) has been reported as a key regulator for the occurrence and development of asthma. However, little is known regarding its role in ASM cell p...
متن کاملAcetylcholine: a novel regulator of airway smooth muscle remodelling?
Increased airway smooth muscle mass is a pathological feature that asthma and chronic obstructive pulmonary disease (COPD) have in common. This increase has gained renewed interest in view of recent developments showing that airway smooth muscle, instead of solely being a contractile partner, is capable of interacting dynamically with its environment, especially under inflammatory conditions. A...
متن کامل