On Best Approximation by Nonconvex Sets and Perturbation of Nonconvex Inequality Systems in Hilbert Spaces

نویسندگان

  • Chong Li
  • K. F. Ng
چکیده

By virtue of convexification techniques, we study best approximations to a closed set C in a Hilbert space as well as perturbation conditions relative to C and a nonlinear inequality system. Some results on equivalence of the best approximation and the basic constraint qualification are established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality

‎In this paper‎, ‎we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints‎. ‎We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions‎. ‎We also fo...

متن کامل

Existence Results for First and Second Order Nonconvex Sweeping Processes with Perturbations and with Delay: Fixed Point Approach

We are interested in existence results for nonconvex functional differential inclusions. First, we prove an existence result, in separable Hilbert spaces, for first order nonconvex sweeping processes with perturbation and with delay. Then, by using this result and a fixed point theorem we prove an existence result for second order nonconvex sweeping processes with perturbation and with delay of...

متن کامل

Approximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces

This paper introduces an implicit scheme for a   continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a   sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup.   The main result is to    prove the strong convergence of the proposed implicit scheme to the unique solutio...

متن کامل

Well Posed Optimization Problems and Nonconvex Chebyshev Sets in Hilbert Spaces

A result on the existence and uniqueness of metric projection for certain sets is proved, by means of a saddle point theorem. A conjecture, based on such a result and aiming for the construction of a nonconvex Chebyshev set in a Hilbert space, is presented.

متن کامل

BEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES

We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2002