Every Diassociative A-loop Is Moufang
نویسندگان
چکیده
An A-loop is a loop in which every inner mapping is an automorphism. A problem which had been open since 1956 is settled by showing that every diassociative A-loop is Moufang.
منابع مشابه
Primary Decompositions in Varieties of Commutative Diassociative Loops
The decomposition theorem for torsion abelian groups holds analogously for torsion commutative diassociative loops. With this theorem in mind, we investigate commutative diassociative loops satisfying the additional condition (trivially satisfied in the abelian group case) that all nth powers are central, for a fixed n. For n = 2, we get precisely commutative C loops. For n = 3, a prominent var...
متن کاملOn Moufang A-loops
In a series of papers from the 1940’s and 1950’s, R.H. Bruck and L.J. Paige developed a provocative line of research detailing the similarities between two important classes of loops: the diassociative A-loops and the Moufang loops ([1]). Though they did not publish any classification theorems, in 1958, Bruck’s colleague, J.M. Osborn, managed to show that diassociative, commutative A-loops are ...
متن کاملC-loops: an Introduction
C-loops are loops satisfying x(y(yz)) = ((xy)y)z. They often behave analogously to Moufang loops and they are closely related to Steiner triple systems and combinatorics. We initiate the study of C-loops by proving: (i) Steiner loops are C-loops, (ii) C-loops are alternative, inverse property loops with squares in the nucleus, (iii) the nucleus of a C-loop is a normal subgroup, (iv) C-loops mod...
متن کاملHalf-isomorphisms of Moufang Loops
We prove that if the squaring map in the factor loop of a Moufang loop Q over its nucleus is surjective, then every half-isomorphism of Q onto a Moufang loop is either an isomorphism or an anti-isomorphism. This generalizes all earlier results in this vein.
متن کاملMoufang Loops of Order 2 m , m odd
We first show that every Moufang loop L which contains an abelian associative subloop M of index two and odd order must, in fact, be a group. We then use this to settle the question ”For what value of n = 2m, m odd, must a Moufang loop of order n be associative?” Introduction: This paper is motivated by a question asked by Rajah and Jamal in [19]: If L is a Moufang loop of order 2m with an abel...
متن کامل