A large-scale methane model by incorporating the surface water transport
نویسندگان
چکیده
The effect of surface water movement onmethane emissions is not explicitly considered in most of the current methane models. In this study, a surface water routing was coupled into our previously developed large-scale methane model. The revised methane model was then used to simulate global methane emissions during 2006–2010. From our simulations, the global mean annual maximum inundation extent is 10.6 ± 1.9 km and the methane emission is 297 ± 11 TgC/yr in the study period. In comparison to the currently used TOPMODEL-based approach, we found that the incorporation of surface water routing leads to 24.7% increase in the annual maximum inundation extent and 30.8% increase in the methane emissions at the global scale for the study period, respectively. The effect of surface water transport on methane emissions varies in different regions: (1) the largest difference occurs in flat and moist regions, such as Eastern China; (2) high-latitude regions, hot spots in methane emissions, show a small increase in both inundation extent and methane emissions with the consideration of surface water movement; and (3) in arid regions, the new model yields significantly larger maximum flooded areas and a relatively small increase in the methane emissions. Although surface water is a small component in the terrestrial water balance, it plays an important role in determining inundation extent and methane emissions, especially in flat regions. This study indicates that future quantification of methane emissions shall consider the effects of surface water transport.
منابع مشابه
Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations
With the densification of surface observing networks and the development of remote sensing of greenhouse gases from space, estimations of methane (CH4) sources and sinks by inverse modeling are gaining additional constraining data but facing new challenges. The chemical transport model (CTM) linking the flux space to methane mixing ratio space must be able to represent these different types of ...
متن کاملA Practical Desalinization Model for Large Scale Application
Salinity of soil and water is the most important agricultural hazard in arid and semi-aridregions. In saline soils, yield production directly influences by soluble salts in the root zone aswell as by shallow water table depth. The first step for reclamation of such soils is reducingsalinity to optimum level by leaching. The objective of this study was to develop a practicalmodel to estimate wat...
متن کاملPore-scale Mechanistic Study of the Preferential Mode of Hydrate Formation in Sediments: Coupling of Multiphase Fluid Flow and Sediment Mechanics
We present a discrete element model for the simulation, at the grain scale, of gas migration in brine-saturated deformable media. We account rigorously for the presence of two fluids in the pore space by incorporating grain forces due to pore fluid pressures, and surface tension between fluids. The coupled model permits investigating an essential process that takes place at the base of the hydr...
متن کاملPolyvinylidene Fluoride Hollow Fiber Membrane Contactor Incorporating Surface Modifying Macromolecule for Carbon Dioxide Stripping from Water
Porous surface modified polyvinylidene ïuoride (PVDF) hollow fiber membranes are fabricated through a dry-wet phased inversion process. Surface modifying macromolecules (SMM) (1 wt. %) are used as additives in the spinning dope. The performance of the surface modified membrane in contactor application for CO2 stripping from water is assessed through the fabricated gas–liquid membrane contacto...
متن کاملArtificial Neural Network Modeling for the Management of Oil Slick Transport in the Marine Environments
Due to an increase in demand of petroleum products which are transported by vessels or exported by pipelines, oil spill management becomes a controversial issue in coastal environment safety as well as making serious financial problems. After spilling oil in the water body, oil spreads as a thin layer on the water surface. Currents, waves and wind are the main causes of oil slick transport. The...
متن کامل