Property Testing in Computational Geometry ? ( Extended
نویسندگان
چکیده
We consider the notion of property testing as applied to computational geometry. We aim at developing efficient algorithms which determine whether a given (geometrical) object has a predetermined property Q or is “far” from any object having the property. We show that many basic geometric properties have very efficient testing algorithms, whose running time is significantly smaller than the object description size.
منابع مشابه
Property Testing in Computational Geometry
We consider the notion of property testing as applied to computational geometry. We aim at developing efficient algorithms which determine whether a given (geometrical) object has a predetermined property Q or is “far” from any object having the property. We show that many basic geometric properties have very efficient testing algorithms, whose running time is significantly smaller than the obj...
متن کاملCOMPUTATIONAL ENUMERATION OF POINT DEFECT CLUSTERS IN DOUBLE- LATTICE CRYSTALS
The cluster representation matrices have already been successfully used to enumerate close-packed vacancy clusters in all single-lattice crystals [I, 2]. Point defect clusters in double-lattice crystals may have identical geometry but are distinct due to unique atomic postions enclosing them. The method of representation matrices is extended to make it applicable to represent and enumerate ...
متن کاملAn extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system
In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...
متن کاملTesting Geometric Properties ∗ †
In this paper we study property testing for basic geometric properties. We aim at developing efficient algorithms which determine whether a given (geometrical) object has a predetermined property Q or is “far” from any object having the property. We show that many basic geometric properties have very efficient testing algorithms, whose running time is significantly smaller than the object descr...
متن کاملParleda: a Library for Parallel Processing in Computational Geometry Applications
ParLeda is a software library that provides the basic primitives needed for parallel implementation of computational geometry applications. It can also be used in implementing a parallel application that uses geometric data structures. The parallel model that we use is based on a new heterogeneous parallel model named HBSP, which is based on BSP and is introduced here. ParLeda uses two main lib...
متن کامل