An Extension of the Cayley-hamilton Theorem to the Case of Supermatrices
نویسنده
چکیده
Starting from the expression for the superdeterminant of (xI −M), where M is an arbitrary supermatrix , we propose a definition for the corresponding characteristic polynomial and we prove that each supermatrix satisfies its characteristic equation. Depending upon the factorization properties of the basic polynomials whose ratio defines the above mentioned superdeterminant we are able to construct polynomials of lower degree which are also shown to be annihilated by the supermatrix. Mathematical Subject Classifications (1991).15A75, 15A90, 81T60, 83E99. † On sabbatical leave from Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., 04510 México, D.F.
منابع مشابه
On Alternative Supermatrix Reduction
We consider a nonstandard odd reduction of supermatrices (as compared with the standard even one) which arises in connection with possible extension of manifold structure group reductions. The study was initiated by consideration of the generalized noninvertible superconformal-like transformations. The features of evenand oddreduced supermatrices are investigated on a par. They can be unified i...
متن کاملOn the square root of quadratic matrices
Here we present a new approach to calculating the square root of a quadratic matrix. Actually, the purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of $2times 2$ matrices.
متن کاملOn trivial ends of Cayley graph of groups
In this paper, first we introduce the end of locally finite graphs as an equivalence class of infinite paths in the graph. Then we mention the ends of finitely generated groups using the Cayley graph. It was proved that the number of ends of groups are not depended on the Cayley graph and that the number of ends in the groups is equal to zero, one, two, or infinity. For ...
متن کاملA structured approach to design-for-frequency problems using the Cayley-Hamilton theorem
An inverse eigenvalue problem approach to system design is considered. The Cayley-Hamilton theorem is developed for the general case involving the generalized eigenvalue vibration problem. Since many solutions exist for a desired frequency spectrum, a discussion of the required design information and suggestions for including structural constraints are given. An algorithm for solving the invers...
متن کاملAn Extension of the Cayley–hamilton Theorem for Nonlinear Time–varying Systems
The classical Cayley-Hamilton theorem (Gantmacher, 1974; Kaczorek, 1988; Lancaster, 1969) says that every square matrix satisfies its own characteristic equation. Let A ∈ Cn×n (the set of n × n complex matrices) and p(s) = det[Ins − A] = ∑n i=0 a si, (an = 1) be the characteristic polynomial of A. Then p(A) = ∑n i=0 aiA i = 0n (the n × n zero matrix). The Cayley Hamilton theorem was extended to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996