Toward Causal Inference With Interference.

نویسندگان

  • Michael G Hudgens
  • M Elizabeth Halloran
چکیده

A fundamental assumption usually made in causal inference is that of no interference between individuals (or units); that is, the potential outcomes of one individual are assumed to be unaffected by the treatment assignment of other individuals. However, in many settings, this assumption obviously does not hold. For example, in the dependent happenings of infectious diseases, whether one person becomes infected depends on who else in the population is vaccinated. In this article, we consider a population of groups of individuals where interference is possible between individuals within the same group. We propose estimands for direct, indirect, total, and overall causal effects of treatment strategies in this setting. Relations among the estimands are established; for example, the total causal effect is shown to equal the sum of direct and indirect causal effects. Using an experimental design with a two-stage randomization procedure (first at the group level, then at the individual level within groups), unbiased estimators of the proposed estimands are presented. Variances of the estimators are also developed. The methodology is illustrated in two different settings where interference is likely: assessing causal effects of housing vouchers and of vaccines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Causal Inference with Interference

LAN LIU: Causal Inference with Interference (Under the direction of Dr. Michael G. Hudgens) Recently, increasing attention has focused on making causal inference when interference is possible, i.e., when the potential outcomes of one individual may be affected by the treatment (or exposure) of other individuals. For example, in infectious diseases, whether one individual becomes infected may de...

متن کامل

Interference and Sensitivity Analysis.

Causal inference with interference is a rapidly growing area. The literature has begun to relax the "no-interference" assumption that the treatment received by one individual does not affect the outcomes of other individuals. In this paper we briefly review the literature on causal inference in the presence of interference when treatments have been randomized. We then consider settings in which...

متن کامل

What Do Randomized Studies of Housing Mobility Demonstrate?: Causal Inference in the Face of Interference

During the past 20 years, social scientists using observational studies have generated a large and inconclusive literature on neighborhood effects. Recent workers have argued that estimates of neighborhood effects based on randomized studies of housing mobility, such as the “Moving to Opportunity” (MTO) demonstration, are more credible. These estimates are based on the implicit assumption of no...

متن کامل

Causal Inference Under Network Interference: A Framework for Experiments on Social Networks

No man is an island, as individuals interact and influence one another daily in our society. When social influence takes place in experiments on a population of interconnected individuals, the treatment on a unit may affect the outcomes of other units, a phenomenon known as interference. This thesis develops a causal framework and inference methodology for experiments where interference takes p...

متن کامل

Practice of Epidemiology Formalizing the Role of Agent-Based Modeling in Causal Inference and Epidemiology

Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, andmultiple interacting causal effects. However, considerable theoretical and practical issues impede the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Statistical Association

دوره 103 482  شماره 

صفحات  -

تاریخ انتشار 2008