Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere
نویسندگان
چکیده
A laser transmitter has been developed and incorporated into a micro-pulse differential absorption lidar (DIAL) for water vapor profiling in the lower troposphere as an important step towards long-term autonomous field operation. The laser transmitter utilizes two distributed Bragg reflector (DBR) diode lasers to injection seed a pulsed tapered semiconductor optical amplifier (TSOA), and is capable of producing up to 10 μJ of pulse energy with a 1 μs pulse duration and a 10 kHz pulse repetition frequency. The on-line wavelength of the laser transmitter can operate anywhere along the water vapor absorption feature centered at 828.187 nm (in vacuum) depending on the prevailing atmospheric conditions, while the off-line wavelength operates at 828.287 nm. This laser transmitter has been incorporated into a DIAL instrument utilizing a 35.6 cm Schmidt-Cassegrain telescope and fiber coupled avalanche photodiode (APD) operating in the photon counting mode. The performance of the DIAL instrument was demonstrated over a ten-day observation period. During this observation period, data from radiosondes were used to retrieve water vapor number density profiles for comparisons with the number density profiles retrieved from the DIAL data. OPEN ACCESS Remote Sens. 2013, 5 6242
منابع مشابه
Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor
A field-deployable water vapor profiling instrument that builds on the foundation of the preceding generations of diode-laser-based differential absorption lidar (DIAL) laboratory prototypes was constructed and tested. Significant advances are discussed, including a unique shared telescope design that allows expansion of the outgoing beam for eye-safe operation with optomechanical and thermal s...
متن کاملWater Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL)
A differential absorption lidar (DIAL) instrument for automated profiling of water vapor in the lower troposphere has been designed, tested, and is in routine operation at Montana State University. The laser transmitter for the DIAL instrument uses a widely tunable external cavity diode laser (ECDL) to injection seed two cascaded semiconductor optical amplifiers (SOAs) to produce a laser transm...
متن کاملNASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles.
An airborne differential absorption lidar (DIAL) system has been developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. The multipurpose DIAL system can operate from 280 to 1064 nm for measurements of ozone, sulfur dioxide, nitrogen dioxide, water vapor, temperature,pressure, and aerosol backscattering. The laser transmitter consists of two n...
متن کاملDevelopment of a widely tunable amplified diode laser differential absorption lidar for profiling atmospheric water vapor
This work describes the design and testing of a highly-tunable differential absorption lidar (DIAL) instrument utilizing an all-semiconductor transmitter. This new DIAL instrument transmitter has a highly-tunable external cavity diode laser (ECDL) as a seed laser source for two cascaded commercial tapered amplifiers. The transmitter has the capability of tuning over a range of ~ 17 nm centered ...
متن کاملTransmitter design for differential absorption water vapor LIDAR
We present a stabilized master-laser power-amplifier system for ground-based differential absorption LIDAR (DIAL) for profiling atmospheric water vapor. This system consists of two CW master lasers with the wavelength of each master laser actively stabilized. The system employs GaAlAs laser diodes for both the master lasers and the tapered laser amplifier. The on-line master laser is currently ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 5 شماره
صفحات -
تاریخ انتشار 2013