Proximity of Transmembrane Segments 5 and 8 of the Glutamate Transporter GLT-1 Inferred from Paired Cysteine Mutagenesis
نویسندگان
چکیده
BACKGROUND GLT-1 is a glial glutamate transporter which maintains low synaptic concentrations of the excitatory neurotransmitter enabling efficient synaptic transmission. Based on the crystal structure of the bacterial homologue Glt(Ph), it has been proposed that the reentrant loop HP2, which connects transmembrane domains (TM) 7 and 8, moves to open and close access to the binding pocket from the extracellular medium. However the conformation change between TM5 and TM8 during the transport cycle is not clear yet. We used paired cysteine mutagenesis in conjunction with treatments with Copper(II)(1,10-Phenanthroline)(3) (CuPh), to verify the predicted proximity of residues located at these structural elements of GLT-1. METHODOLOGY/PRINCIPAL FINDINGS To assess the proximity of transmembrane domain (TM) 5 relative to TM8 during transport by the glial glutamate transporter GLT-1/EAAT2, cysteine pairs were introduced at the extracellular ends of these structural elements. A complete inhibition of transport by Copper(II)(1,10-Phenanthroline)(3) is observed in the double mutants I295C/I463C and G297C/I463C, but not in the corresponding single mutants. Glutamate and potassium, both expected to increase the proportion of inward-facing transporters, significantly protected against the inhibition of transport activity of I295C/I463C and G297C/I463C by CuPh. Transport by the double mutants I295C/I463C and G297C/I463C also was inhibited by Cd(2+). CONCLUSIONS/SIGNIFICANCE Our results suggest that TM5 (Ile-295, Gly-297) is in close proximity to TM8 (Ile-463) in the mammalian transporter, and that the spatial relationship between these domains is altered during the transport cycle.
منابع مشابه
TM4 of the glutamate transporter GLT-1 experiences substrate-induced motion during the transport cycle
Excitatory amino acid transporter 2 (EAAT2), also known as glial glutamate transporter type 1 (GLT-1), plays an important role in maintaining the extracellular glutamate concentrations below neurotoxic levels. The highly conserved TM2 transmembrane domain of GLT-1 maintains a stable position during the transport cycle; however, the effect of the transport cycle on the topology of TM4 in not wel...
متن کاملCysteine scanning mutagenesis of transmembrane helix 3 of a brain glutamate transporter reveals two conformationally sensitive positions.
Glutamate transporters in the brain remove the neurotransmitter from the synapse by cotransport with three sodium ions into the surrounding cells. Recent structural work on an archaeal homolog suggests that, during substrate translocation, the transport domain, including the peripheral transmembrane helix 3 (TM3), moves relative to the trimerization domain in an elevator-like process. Moreover,...
متن کاملBiotinylation of Single Cysteine Mutants of the Glutamate Transporter GLT-1 from Rat Brain Reveals Its Unusual Topology
In the central nervous system, (Na+ + K+)-coupled glutamate transporters restrict the neurotoxicity of this transmitter and limit the duration of synaptic excitation at some synapses. The various isotransporters exhibit a particularly high homology in an extended hydrophobic domain of ill-defined topology that contains several determinants involved in ion and transmitter binding. Here, we descr...
متن کاملConformationally sensitive reactivity to permeant sulfhydryl reagents of cysteine residues engineered into helical hairpin 1 of the glutamate transporter GLT-1.
In the central nervous system, glutamate transporters terminate the actions of this neurotransmitter by concentrating it into cells surrounding the synapse by a process involving sodium and proton cotransport followed by countertransport of potassium. These transporters contain two oppositely oriented helical hairpins 1 and 2. Hairpin 1 originates from the cytoplasm, but its tip is close to tha...
متن کاملEstrogen and progesterone attenuate glutamate neurotoxicity via regulation of EAAT3 and GLT-1 in a rat model of ischemic stroke
Objective(s): Glutamate is the most widespread neurotransmitter in the central nervous system and has several functions as a neuromodulator in the brain although in pathological conditions like ischemia it is excessively released causing cell death. Under physiological conditions, glutamate is rapidly scavenged from the synaptic cleft by excitatory amino-acid transport...
متن کامل