Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie).
نویسندگان
چکیده
Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments.
منابع مشابه
Selective feeding of tobacco budworm and bollworm (Lepidoptera: Noctuidae) on meridic diet with different concentrations of Bacillus thuringiensis proteins.
Laboratory experiments were conducted to evaluate the behavior of bollworm, Helicoverpa zea (Boddie), and tobacco budworm, Heliothis virescens (F.), larvae on meridic diet with different concentrations of the Cry1Ac and Cry2Ab proteins from Bacillus thuringiensis subsp. kurstaki Berliner. The proteins used in these experiments are the ones in commercially available Bollgard and Bollgard II cott...
متن کاملDevelopment of bollworms, Helicoverpa zea, on two commercial Bollgard® cultivars that differ in overall Cry1Ac levels
Research was conducted to quantify the development of the corn earworm (= bollworm), Helicoverpa zea (Boddie), on two different transgenic cotton cultivars (DP 50B and NuCOTN 33B) that contained different levels of the Cry1Ac endotoxin from the soil bacterium, Bacillus thuringiensis Berliner. Using a field cage, an inverse relationship between the amount of Cry1Ac among cultivars versus the wei...
متن کاملNew resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin.
In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera ...
متن کاملBollworm (Lepidoptera: Noctuidae) survival on 'Bollgard' and 'Bollgard II' cotton flower bud and flower components.
Genetically modified cotton, Gossypium hirsutum L., cultivars ('Bollgard') that produce crystalline proteins from Bacillus thuringiensis (Berliner) are valuable tools for managing lepidopteran insect pests in the United States. However, high numbers of bollworm, Helicoverpa zea (Boddie), larvae have been observed feeding in white flowers of these cultivars. Fresh tissue bioassays were conducted...
متن کاملCross-resistance and interactions between Bt toxins Cry1Ac and Cry2Ab against the cotton bollworm
To delay evolution of pest resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt), the "pyramid" strategy uses plants that produce two or more toxins that kill the same pest. We conducted laboratory diet experiments with the cotton bollworm, Helicoverpa armigera, to evaluate cross-resistance and interactions between two toxins in pyramided Bt cotton (Cry...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 74 2 شماره
صفحات -
تاریخ انتشار 2008