Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier
نویسندگان
چکیده
Submarine melt can account for substantial mass loss at tidewater glacier termini. However, the processes controlling submarine melt are poorly understood due to limited observations of submarine termini. Here at a tidewater glacier in central West Greenland, we identify subglacial discharge outlets and infer submarine melt across the terminus using direct observations of the submarine terminus face. We find extensive melting associated with small discharge outlets. While the majority of discharge is routed to a single, large channel, outlets not fed by large tributaries drive submarine melt rates in excess of 3.0md 1 and account for 85% of total estimated melt across the terminus. Nearly the entire terminus is undercut, which may intersect surface crevasses and promote calving. Severe undercutting constricts buoyant outflow plumes and may amplify melt. The observed morphology and melt distribution motivate more realistic treatments of terminus shape and subglacial discharge in submarine melt models.
منابع مشابه
Amodel for tidewater glacier undercutting by submarine melting
Dynamic change at the marine-terminating margins of the Greenland Ice Sheet may be initiated by the ocean, particularly where subglacial runoff drives vigorous ice-marginal plumes and rapid submarine melting. Here we model submarine melt-driven undercutting of tidewater glacier termini, simulating a process which is key to understanding ice-ocean coupling. Where runoff emerges from broad subgla...
متن کاملSubglacial discharge at tidewater glaciers revealed by seismic tremor
Subglacial discharge influences glacier basal motion and erodes and redeposits sediment. At tidewater glacier termini, discharge drives submarine terminus melting, affects fjord circulation, and is a central component of proglacial marine ecosystems. However, our present inability to track subglacial discharge and its variability significantly hinders our understanding of these processes. Here ...
متن کاملSubmarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A
Heat, freshand sea-water balances indicate that the late-summer rate of submarine melting at the terminus of tidewater LeConte Glacier, Alaska, U.S.A., in 2000 was about 12mdw.e., averaged over the submerged face. This is 57% of the estimated total ice loss at the terminus (calving plus melting) at this time. Submarine melting may thus providea significantcontribution to the overall ablationof ...
متن کاملContrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland
Neighboring tidewater glaciers often exhibit asynchronous dynamic behavior, despite relatively uniform regional atmospheric and oceanic forcings. This variability may be controlled by a combination of local factors, including glacier and fjord geometry, fjord heat content and circulation, and glacier surface melt. In order to characterize and understand contrasts in adjacent tidewater glacier a...
متن کاملThe impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords
Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes enhance melt and undercutting, leading to calving and potential glacier destabilization. Here we systematically evaluate how simulated plume structure and submarine melt during summer months depends on r...
متن کامل