The Haemophilus influenzae HMW1C Protein Is a Glycosyltransferase That Transfers Hexose Residues to Asparagine Sites in the HMW1 Adhesin

نویسندگان

  • Susan Grass
  • Cheryl F. Lichti
  • R. Reid Townsend
  • Julia Gross
  • Joseph W. St. Geme
چکیده

The Haemophilus influenzae HMW1 adhesin is a high-molecular weight protein that is secreted by the bacterial two-partner secretion pathway and mediates adherence to respiratory epithelium, an essential early step in the pathogenesis of H. influenzae disease. In recent work, we discovered that HMW1 is a glycoprotein and undergoes N-linked glycosylation at multiple asparagine residues with simple hexose units rather than N-acetylated hexose units, revealing an unusual N-glycosidic linkage and suggesting a new glycosyltransferase activity. Glycosylation protects HMW1 against premature degradation during the process of secretion and facilitates HMW1 tethering to the bacterial surface, a prerequisite for HMW1-mediated adherence. In the current study, we establish that the enzyme responsible for glycosylation of HMW1 is a protein called HMW1C, which is encoded by the hmw1 gene cluster and shares homology with a group of bacterial proteins that are generally associated with two-partner secretion systems. In addition, we demonstrate that HMW1C is capable of transferring glucose and galactose to HMW1 and is also able to generate hexose-hexose bonds. Our results define a new family of bacterial glycosyltransferases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Actinobacillus pleuropneumoniae HMW1C-Like Glycosyltransferase Mediates N-Linked Glycosylation of the Haemophilus influenzae HMW1 Adhesin

The Haemophilus influenzae HMW1 adhesin is an important virulence exoprotein that is secreted via the two-partner secretion pathway and is glycosylated at multiple asparagine residues in consensus N-linked sequons. Unlike the heavily branched glycans found in eukaryotic N-linked glycoproteins, the modifying glycan structures in HMW1 are mono-hexoses or di-hexoses. Recent work demonstrated that ...

متن کامل

The HMW1C-Like Glycosyltransferases—An Enzyme Family with a Sweet Tooth for Simple Sugars

The HMW1 and HMW2 adhesins of nontypeable Haemophilus influenzae are high-molecular weight proteins that are secreted by the two-partner secretion (TPS) pathway, also known as the Type Vb secretion pathway [1,2]. TPS systems typically consist of a large extracellular protein called a TpsA protein (encoded by a tpsA gene) and a cognate outer membrane pore-forming translocator protein called a Tp...

متن کامل

Unconventional N-Linked Glycosylation Promotes Trimeric Autotransporter Function in Kingella kingae and Aggregatibacter aphrophilus

UNLABELLED Glycosylation is a widespread mechanism employed by both eukaryotes and bacteria to increase the functional diversity of their proteomes. The nontypeable Haemophilus influenzae glycosyltransferase HMW1C mediates unconventional N-linked glycosylation of the adhesive protein HMW1, which is encoded in a two-partner secretion system gene cluster that also encodes HMW1C. In this system, H...

متن کامل

Cloning of conserved regions of nontypeable Haemophilus influenzae hmw1 core binding domain

Colonization of nontypeable Haemophilus influenzae (NTHi) in nasopharynx causes respiratory tract disease. In 80% of clinical isolates, HMW proteins are the major adhesions and induce protective antibodies in the hosts. Therefore, it can be used as a vaccine candidate. The aim of this study is designing and cloning of the conserved regions of NTHi hmw1 core binding domain.In this study, the sta...

متن کامل

Structure of the Haemophilus influenzae HMW1B translocator protein: evidence for a twin pore.

Secretion of the Haemophilus influenzae HMW1 adhesin occurs via the two-partner secretion pathway and requires the HMW1B outer membrane translocator. HMW1B has been subjected to extensive biochemical studies to date. However, direct examination of the structure of HMW1B has been lacking, leaving fundamental questions about the oligomeric state, the membrane-embedded beta-barrel domain, the appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010