Anoxia-mediated calcium release through the mitochondrial permeability transition pore silences NMDA receptor currents in turtle neurons.
نویسندگان
چکیده
Mammalian neurons are anoxia sensitive and rapidly undergo excitotoxic cell death when deprived of oxygen, mediated largely by Ca(2+) entry through over-activation of N-methyl-d-aspartate receptors (NMDARs). This does not occur in neurons of the anoxia-tolerant western painted turtle, where a decrease in NMDAR currents is observed with anoxia. This decrease is dependent on a modest rise in cytosolic [Ca(2+)] ([Ca(2+)]c) that is mediated by release from the mitochondria. The aim of this study was to determine whether the mitochondrial permeability transition pore (mPTP) is involved in NMDAR silencing through release of mitochondrial Ca(2+). Opening the mPTP during normoxia with atractyloside decreased NMDAR currents by releasing mitochondrial Ca(2+), indicated by an increase in Oregon Green fluorescence. Conversely, the mPTP blocker cyclosporin A prevented the anoxia-mediated increase in [Ca(2+)]c and reduction in NMDAR currents. Mitochondrial membrane potential (Ψm) was determined using rhodamine-123 fluorescence and decreased with the onset of anoxia in a time frame that coincided with the increase in [Ca(2+)]c. Activation of mitochondrial ATP-sensitive potassium (mK(+)ATP) channels also releases mitochondrial Ca(2+) and we show that activation of mK(+)ATP channels during normoxia with diazoxide leads to Ψm depolarization and inhibition with 5-hydroxydecanoic acid blocked anoxia-mediated Ψm depolarization. Ψm does not collapse during anoxia but rather reaches a new steady-state level that is maintained via ATP hydrolysis by the F1-F0 ATPase, as inhibition with oligomycin depolarizes Ψm further than the anoxic level. We conclude that anoxia activates mK(+)ATP channels, which leads to matrix depolarization, Ca(2+) release via the mPTP, and ultimately silencing of NMDARs.
منابع مشابه
Scavenging ROS dramatically increase NMDA receptor whole-cell currents in painted turtle cortical neurons.
Oxygen deprivation triggers excitotoxic cell death in mammal neurons through excessive calcium loading via over-activation of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. This does not occur in the western painted turtle, which overwinters for months without oxygen. Neurological damage is avoided through anoxia-mediated decreases in ...
متن کاملRegulation of AMPA receptor currents by 3 mitochondrial ATP sensitive K + channels in anoxic 4 turtle neurons
24 Mammalian neurons rapidly undergo excitotoxic cell death during anoxia, while neurons 25 from the anoxia-tolerant painted turtle survive without oxygen for hours and offer a unique 26 model to study mechanisms to reduce the severity of cerebral stroke. An anoxia-mediated 27 decrease in whole-cell NMDA and AMPA receptor currents are an important part of the turtle’s 28 natural defence. Here w...
متن کاملMethanol extract and fraction of Anchomanes difformis root tuber modulate liver mitochondrial membrane permeability transition pore opening in rats
Objective: Extracts of Anchomanes difformis (AD) are used in folkloric medicine to treat several diseases and infections. However, their roles in mitochondrial permeability transition pore opening are not known. Material and Methods: The viability of mitochondria isolated from Wistar rat liver used in this experiment, was assessed by monitoring their swel...
متن کامل4-hydroxy-2(E)-Nonenal facilitates NMDA-Induced Neurotoxicity via Triggering Mitochondrial Permeability Transition Pore Opening and Mitochondrial Calcium Overload
N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxicity is one of the major causes for neuronal cell death during cerebral ischemic insult. Previously, we reported that the final product of lipid membrane peroxidation 4-hydroxy-2E-nonenal (HNE) synergistically increased NMDA receptor-mediated excitotoxicity (J Neurochem., 2006). In this study, we investigated the mechanism involved in the ...
متن کاملRegulation of AMPA receptor currents by mitochondrial ATP-sensitive K+ channels in anoxic turtle neurons.
Mammalian neurons rapidly undergo excitotoxic cell death during anoxia, whereas neurons from the anoxia-tolerant painted turtle survive without oxygen for hours and offer a unique model to study mechanisms to reduce the severity of cerebral stroke. An anoxia-mediated decrease in whole cell N-methyl-D-aspartate receptor and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) cu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 216 Pt 23 شماره
صفحات -
تاریخ انتشار 2013