ADP-ribosylation-factor-regulated phospholipase D activity localizes to secretory vesicles and mobilizes to the plasma membrane following N-formylmethionyl-leucyl-phenylalanine stimulation of human neutrophils.

نویسندگان

  • C P Morgan
  • H Sengelov
  • J Whatmore
  • N Borregaard
  • S Cockcroft
چکیده

Phospholipase D (PLD) is responsible for the hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline. Human neutrophils contain PLD activity which is regulated by the small GTPases, ADP-ribosylation factor (ARF) and Rho proteins. In this study we have examined the subcellular localization of the ARF-regulated PLD activity in non-activated neutrophils and cells 'primed' with N-formylmethionyl-leucyl-phenylalanine (fMetLeuPhe). We report that PLD activity is localized at the secretory vesicles in control cells and is mobilized to the plasma membrane upon stimulation with fMetLeuPhe. We conclude that the ARF-regulated PLD activity is translocated to the plasma membrane by secretory vesicles upon stimulation of neutrophils with fMetLeuPhe in inflammatory/priming doses. We propose that this relocalization of PLD is important for the subsequent events occurring during neutrophil activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subcellular localization and translocation of the receptor for N-formylmethionyl-leucyl-phenylalanine in human neutrophils.

The subcellular localization of N-formylmethionyl-leucyl-phenylalanine (fMLP) receptors in human neutrophils was investigated. The fMLP receptor was detected with a high-affinity, photoactivatable, radioiodinated derivative of N-formyl-methionyl-leucyl-phenylalanyl-lysine (fMLFK). Neutrophils were disrupted by nitrogen cavitation and fractionated on Percoll density gradients. fMLP receptors wer...

متن کامل

Calcium-regulated exocytosis of dense-core vesicles requires the activation of ADP-ribosylation factor (ARF)6 by ARF nucleotide binding site opener at the plasma membrane

The ADP ribosylation factor (ARF) GTP binding proteins are believed to mediate cytoskeletal remodeling and vesicular trafficking along the secretory pathway. Here we show that ARF6 is specifically associated with dense-core secretory granules in neuroendocrine PC12 cells. Stimulation with a secretagogue triggers the recruitment of secretory granules to the cell periphery and the concomitant act...

متن کامل

Aldo-keto reductase family 1, member B10 is secreted through a lysosome-mediated non-classical pathway.

AKR1B10 (aldo-keto reductase family 1, member B10) protein is primarily expressed in normal human small intestine and colon, but overexpressed in several types of human cancers and considered as a tumour marker. In the present study, we found that AKR1B10 protein is secreted from normal intestinal epithelium and cultured cancer cells, as detected by a newly developed sandwich ELISA and Western ...

متن کامل

Regulated exocytosis in chromaffin cells. Translocation of ARF6 stimulates a plasma membrane-associated phospholipase D.

The ADP-ribosylation factor (ARF) GTP-binding proteins have been implicated in a wide range of vesicle transport and fusion steps along the secretory pathway. In chromaffin cells, ARF6 is specifically associated with the membrane of secretory chromaffin granules. Since ARF6 is an established regulator of phospholipase D (PLD), we have examined the intracellular distribution of ARF6 and PLD acti...

متن کامل

Regulated Exocytosis in Chromaffin Cells

The ADP-ribosylation factor (ARF) GTP-binding proteins have been implicated in a wide range of vesicle transport and fusion steps along the secretory pathway. In chromaffin cells, ARF6 is specifically associated with the membrane of secretory chromaffin granules. Since ARF6 is an established regulator of phospholipase D (PLD), we have examined the intracellular distribution of ARF6 and PLD acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 325 ( Pt 3)  شماره 

صفحات  -

تاریخ انتشار 1997