Purification and biosynthesis of a derepressible periplasmic arylsulfatase from Chlamydomonas reinhardtii

نویسندگان

  • E L de Hostos
  • R K Togasaki
  • A Grossman
چکیده

The unicellular green alga Chlamydomonas reinhardtii responds to sulfate deprivation by producing an arylsulfatase (Lien, T., and O. Schreiner. 1975. Biochim. Biophys. Acta. 384:168-179; Schreiner, O., 1975. Biochim. Biophys. Acta. 384:180-193) and by developing the capacity to transport sulfate more rapidly (our unpublished data). The arylsulfatase activity, detectable 3 h after the transfer of the cells to low sulfate medium (less than or equal to 10 microM sulfate), is a periplasmic protein released into the culture medium by cw15, a cell wall-less mutant of C. reinhardtii. We have purified the derepressible arylsulfatase to homogeneity and have raised monospecific antibodies to it. The protein monomer (67.6 kD) associates into a dimer, and the enzyme activity shows an alkaline pH optimum and a Km of 0.3 mM for p-nitrophenylsulfate. Studies focused on arylsulfatase biosynthesis demonstrate that it is glycosylated and synthesized as a higher molecular mass precursor. The mature protein contains complex N-linked oligosaccharides and the primary translation product has an apparent molecular mass approximately 5 kD larger than the deglycosylated monomer. Since translatable RNA encoding the arylsulfatase can only be detected in cells after sulfate starvation, it is likely that accumulation of the enzyme is regulated at the level of transcription, although posttranscriptional processes may also be involved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosynthesis of Silver Nanoparticles Using Chlamydomonas reinhardtii and its Inhibitory Effect on Growth and Virulence of Listeria monocytogenes

Background: Biosynthesis of nanoparticles using microorganisms, enzymes, and plant extracts is regarded as an alternative to chemical methods. Microalgae appear to be an efficient biological platform for nanoparticle synthesis as they grow rapidly and produce large biomass at lower cost. Objectives: The possibility of silver nanoparticles biosynthesisby freshwater green microalgae, Chlamydomona...

متن کامل

CO(2)-responsive transcriptional regulation of CAH1 encoding carbonic anhydrase is mediated by enhancer and silencer regions in Chlamydomonas reinhardtii.

Chlamydomonas reinhardtii adapts to the stress of CO(2)-limiting conditions through the induction of a set of genes including CAH1, which encodes a periplasmic carbonic anhydrase. CAH1 is up-regulated under low-CO(2) conditions (air containing 0.04% [v/v] CO(2)) in the presence of light, whereas it is down-regulated under high-CO(2) conditions (5% [v/v] CO(2)) or in the dark. In an effort to id...

متن کامل

Sulfur economy and cell wall biosynthesis during sulfur limitation of Chlamydomonas reinhardtii.

We have identified two novel periplasmic/cell wall polypeptides that specifically accumulate during sulfur limitation of Chlamydomonas reinhardtii. These polypeptides, present at high levels in the extracellular polypeptide fraction from a sulfur-deprived, cell wall-minus C. reinhardtii strain, have apparent molecular masses of 76 and 88 kD and are designated Ecp76 and Ecp88. N-terminal sequenc...

متن کامل

Critical function of a Chlamydomonas reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation.

Forward genetics was used to isolate Chlamydomonas reinhardtii mutants with altered abilities to acclimate to sulfur (S) deficiency. The ars76 mutant has a deletion that eliminates several genes, including VACUOLAR TRANSPORTER CHAPERONE1 (VTC1), which encodes a component of a polyphosphate polymerase complex. The ars76 mutant cannot accumulate arylsulfatase protein or mRNA and shows marked alte...

متن کامل

A New Chloroplast Protein Is Induced by Growth on Low CO(2) in Chlamydomonas reinhardtii.

The biosynthesis of a 36 kilodalton polypeptide of Chlamydomonas reinhardtii was induced by photoautotrophic growth on low CO(2). Fractionation studies using the cell-wall-deficient strain of C. reinhardtii, CC-400, showed that this polypeptide was different from the low CO(2)-induced periplasmic carbonic anhydrase. In addition, the 36 kilodalton polypeptide was found to be localized in intact ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 106  شماره 

صفحات  -

تاریخ انتشار 1988