Constructions for optimal optical orthogonal codes
نویسندگان
چکیده
In this paper two recursive constructions for optimal optical orthogonal codes are presented by means of incomplete di/erence matrices and perfect cyclic di/erence packings. These improve the known existence results concerning optimal (v; 4; 1)-OOCs. c © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Geometric constructions of optimal optical orthogonal codes
We provide a variety of constructions of (n,w, λ)-optical orthogonal codes using special sets of points and Singer groups in finite projective spaces. In several of the constructions, we are able to prove that the resulting codes are optimal with respect to the Johnson bound. The optimal codes exhibited have λ = 1, 2 and w − 1 (where w is the weight of each codeword in the code). The remaining ...
متن کاملOptical Orthogonal Codes from Singer Groups
We construct some new families of optical orthogonal codes that are asymptotically optimal. In particular, for any prescribed value of λ, we construct infinite families of (n, w, λ)-OOCs that in each case are asymptotically optimal. Our constructions rely on various techniques in finite projective spaces involving normal rational curves and Singer groups. These constructions generalize and impr...
متن کاملOptical orthogonal codes: Their bounds and new optimal constructions
A (v, k, λa, λc) optical orthogonal code C is a family of (0, 1)-sequences of length v and weight k satisfying the following two correlation properties: (1) ∑ 0≤t≤v−1xtxt+i ≤ λa for any x = (x0, x1, . . . , xv−1) and any integer i 6≡ 0 mod v; and (2) ∑ 0≤t≤v−1xtyt+i ≤ λb for any x = (x0, x1, . . . , xv−1), y = (y0, y1, . . . , yv−1) with x 6= y, and any integer i, where subscripts are taken mod...
متن کاملCombinatorial Constructions for Optical Orthogonal Codes
A (v, k, λ) optical orthogonal code C is a family of (0, 1) sequences of length v and weight k satisfying the following correlation properties: (1) ∑ 0≤t≤v−1xtxt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C and any integer i ̸≡ 0 (mod v); (2) ∑ 0≤t≤v−1xtyt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C, y = (y0, y1, . . . , yv−1) ∈ C with x ̸= y, and any integer i, where the subscripts are taken mo...
متن کاملCombinatorial constructions of optimal optical orthogonal codes with weight 4
A (v, k, λ) optical orthogonal code C is a family of (0, 1) sequences of length v and weight k satisfying the following two correlation properties: (1) ∑ 0≤t≤v−1xtxt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C and any integer i 6≡ 0 (mod v); (2) ∑ 0≤t≤v−1xtyt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C, y = (y0,y1, . . ., yv−1) ∈ C with x 6= y, and any integer i, where the subscripts are take...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 261 شماره
صفحات -
تاریخ انتشار 2003