Part I: Signature Reduct of an Algebra

نویسنده

  • Grzegorz Bancerek
چکیده

One can prove the following propositions: (1) Let I be a set, f be a function, and F , G be many sorted functions indexed by I. If rng f ⊆ I, then (G ◦ F ) · f = (G · f) ◦ (F · f). (2) Let S be a non empty non void many sorted signature, o be an operation symbol of S, V be a non-empty many sorted set indexed by the carrier of S, and x be a set. Then x is an argument sequence of Sym(o, V ) if and only if x is an element of Args(o,Free(V )). Let S be a non empty non void many sorted signature, let V be a non-empty many sorted set indexed by the carrier of S, and let o be an operation symbol of S. Note that every element of Args(o,Free(V )) is decorated tree yielding. Next we state two propositions: (3) Let S be a non empty non void many sorted signature and A1, A2 be algebras over S. Suppose the sorts of A1 are transformable to the sorts of A2. Let o be an operation symbol of S. If Args(o,A1) 6= ∅, then Args(o,A2) 6= ∅.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A non representable infinite dimensional quasi-polyadic equality algebra with a representable cylindric reduct

We construct an infinite dimensional quasi-polyadic equality algebra A such that its cylindric reduct is representable, while A itself is not representable. 1 The most well known generic examples of algebraizations of first order logic are Tarski’s cylindric algebras (CA) and Halmos’ polyadic equality algebras (PEA). The theory of cylindric algebras is well developed in the treatise [10], [11],...

متن کامل

Signature submanifolds for some equivalence problems

This article concerned on the study of signature submanifolds for curves under Lie group actions SE(2), SA(2) and for surfaces under SE(3). Signature submanifold is a regular submanifold which its coordinate components are differential invariants of an associated manifold under Lie group action, and therefore signature submanifold is a key for solving equivalence problems.

متن کامل

The NEAT Embedding Problem for Algebras Other than cylindric Algebras and for Infinite Dimensions

Hirsch and Hodkinson proved, for 3 ≤ m < ω and any k < ω, that the class SNrmCAm+k+1 is strictly contained in SNrmCAm+k and if k ≥ 1 then the former class cannot be defined by any finite set of first order formulas, within the latter class. We generalise this result to the following algebras of m-ary relations for which the neat reduct operator Nrm is meaningful: polyadic algebras with or witho...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity

This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...

متن کامل

The Subpower Membership Problem for Mal'cEV Algebras

Given tuples a1, . . . , ak and b in A n for some algebraic structure A, the subpower membership problem asks whether b is in the subalgebra of An that is generated by a1, . . . , ak . For A a finite group, there is a folklore algorithm which decides this problem in time polynomial in n and k. We show that the subpower membership problem for any finite Mal’cev algebra is in NP and give a polyno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996