Modifier-Adaptation Methodology for Real-Time Optimization

نویسندگان

  • Alejandro Gabriel MARChETTI
  • Dominique Bonvin
چکیده

The process industries are characterized by a large number of continuously operating plants, for which optimal operation is of economic importance. However, optimal operation is particularly difficult to achieve when the process model used in the optimization is inaccurate or in the presence of process disturbances. In highly automated plants, optimal operation is typically addressed by a decision hierarchy involving several levels that include plant scheduling, real-time optimization (RTO), and process control. At the RTO level, medium-term decisions are made by considering economic objectives explicitly. This step typically relies on an optimizer that determines the optimal steady-state operating point under slowly changing conditions such as catalyst decay or changes in raw material quality. This optimal operating point is characterized by setpoints that are passed to lower-level controllers. Model-based RTO typically involves nonlinear first-principles models that describe the steady-state behavior of the plant. Since accurate models are rarely available in industrial applications, RTO typically proceeds using an iterative two-step approach, namely a parameter estimation step followed by an optimization step. The idea is to repeatedly estimate selected uncertain model parameters and use the updated model to generate new inputs via optimization. This way, the model is expected to yield a better description of the plant at its current operating point. The classical two-step approach works well provided that (i) there is little structural plant-model mismatch, and (ii) the changing operating conditions provide sufficient excitation for estimating the uncertain model parameters. Unfortunately, such convi ditions are rarely met in practice and, in the presence of plant-model mismatch, the algorithm might not converge to the plant optimum, or worse, to a feasible operating point. As far as feasibility is concerned, the updated model should be able to match the plant constraints. Alternatively, feasibility can be enforced without requiring the solution of a parameter estimation problem by adding plant-model bias terms to the model outputs. These biases are obtained by subtracting the model outputs from the measured plant outputs. A bias-update scheme, where the bias terms are used to modify the constraints in the steady-state optimization problem, has been used in industry. However, the analysis of this scheme has received little attention in the research community. In the context of this thesis, such an RTO scheme is referred to as constraint adaptation. The constraint-adaptation scheme is studied, and its local convergence properties are analyzed. Constraint adaptation guarantees reaching a feasible operating point upon convergence. However, the constraints might be violated during the iterations of the algorithm, even when starting the adaptation from within the feasible region. Constraint violations can be avoided by controlling the constraints in the optimization problem, which is done at the process control level by means of model predictive control (MPC). The approach for integrating constraint adaptation with MPC described in this thesis places high emphasis on how constraints are handled. An alternative constraint-adaptation scheme is proposed, which permits one to move the constraint setpoints gradually in the constraint controller. The constraint-adaptation scheme, with and without the constraint controller, is illustrated in simulation through the real-time optimization of a fuel-cell system. It is desirable for a RTO scheme to achieve both feasibility and optimality. Optimality can be achieved if the underlying process model is able to predict not only the constraint values of the plant, but also the gradients of the cost and constraint functions. In the presence of structural plant-model mismatch, this typically requires the use of experimental plant gradient information. Methods integrating parameter estimation with a modified optimization problem that uses plant gradient information have been studied in the literature. The approach studied in this thesis, denoted modifier adaptation, does not require parameter estimation. In addition to the modifiers used in constraint adaptation, gradient-modifier terms based on the difference between the estimated and predicted gradient values are added to the cost and constraint functions in the optimization problem. With this, a point vii that satisfies the first-order necessary conditions of optimality for the plant is obtained upon convergence. The modifier-adaptation scheme is analyzed in terms of model adequacy and local convergence conditions. Different filtering strategies are discussed. The constraint-adaptation and modifier-adaptation RTO approaches are illustrated experimentally on a three-tank system. Finite-difference techniques can be used to estimate experimental gradients. The dual modifier-adaptation approach studied in this thesis drives the process towards optimality, while paying attention to the accuracy of the estimated gradients. The gradients are estimated from the successive operating points generated by the optimization algorithm. A novel upper bound on the gradient estimation error is developed, which is used as a constraint for locating the next operating point.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handling Infeasibilities in Dual Modifier-Adaptation Methodology for Real-Time Optimization

This work shows an extension of dual-modifier adaptation methodology for RTO to reduce the infeasibilities. The main idea is to add a PI controller that is activated only when the measurements shows a violation in the constraints. Since the dual problem is solved to estimate the gradients of the process, an additional controller must be considered in order to increase the inverse of the conditi...

متن کامل

Modifier Adaptation for Run-to-Run Optimization of Transient Processes

Dynamic optimization can be used to determine optimal input profiles for dynamic processes. Due to plant-model mismatch and disturbances, the optimal inputs determined through model-based optimization will, in general, not be optimal for the plant. Modifier adaptation is a methodology that uses measurements to achieve optimality in the presence of uncertainty. Modifier-adaptation schemes have b...

متن کامل

Modifier Adaptation Approach Using Rels to Compute Process Gradients

Real-Time Optimization (RTO) is not always able to achieve optimal process operation due to the presence of significant uncertainty about the plant models used to make decisions, and also due to the differences between control architecture layers which operate on different time-scales and use different kind of models. To overcome these issues, the economic optimization problem solved in the RTO...

متن کامل

Use of Convex Model Approximations for Real-Time Optimization via Modifier Adaptation

Real-Time Optimization (RTO) via modifier adaptation is a class of methods for which measurements are used to iteratively adapt the model via input-affine additive terms. The modifier terms correspond to the deviations between the measured and predicted constraints on the one hand, and the measured and predicted cost and constraint gradients on the other. If the iterative scheme converges, thes...

متن کامل

Model Parameterization Tailored to Real-time Optimization

Challenges in real-time process optimization mainly arise from the inability to build and adapt accurate models for complex physico-chemical processes. This paper surveys different ways of using measurements to compensate for model uncertainty in the context of process optimization. A distinction is made between model-adaptation methods that use the measurements to update the parameters of the ...

متن کامل

A Dual Modifier-Adaptation Approach for Real-Time Optimization

For good performance in practice, real-time optimization schemes need to be able to deal with the inevitable plant-model mismatch problem. Unlike the two-step schemes combining parameter estimation and optimization, the modifier-adaptation approach does not require the model parameters to be estimated on-line. Instead, it uses information regarding the constraints and selected gradients to impr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009