Equivariant Cohomological Chern Characters

نویسنده

  • Wolfgang Lück
چکیده

We construct for an equivariant cohomology theory for proper equivariant CW -complexes an equivariant Chern character, provided that certain conditions about the coefficients are satisfied. These conditions are fulfilled if the coefficients of the equivariant cohomology theory possess a Mackey structure. Such a structure is present in many interesting examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramond-ramond Fields, Fractional Branes and Orbifold Differential K-theory

We study D-branes and Ramond-Ramond fields on global orbifolds of Type II string theory with vanishing H-flux using methods of equivariant K-theory and K-homology. We illustrate how Bredon equivariant cohomology naturally realizes stringy orbifold cohomology. We emphasize its role as the correct cohomological tool which captures known features of the low-energy effective field theory, and which...

متن کامل

Affine Stratifications and equivariant vector bundles on

of the Dissertation Affine Stratifications and equivariant vector bundles on the moduli of principally polarized abelian varieties by Anant Atyam Doctor of Philosophy in Mathematics Stony Brook University 2014 We explicitly construct a locally closed affine stratification of the coarse moduli space of principally polarized complex abelian four folds A4 and using [32], produce an upper bound for...

متن کامل

Chern characters for equivariant K-theory of proper G-CW-complexes

In an earlier paper [10], we showed that for any discrete group G, equivariant K-theory for finite proper G-CW-complexes can be defined using equivariant vector bundles. This was then used to prove a version of the Atiyah-Segal completion theorem in this situation. In this paper, we continue to restrict attention to actions of discrete groups, and begin by constructing an appropriate classifyin...

متن کامل

Chern characters for proper equivariant homology theories and applications to K- and L-theory

We construct for an equivariant homology theory for proper equivariant CW -complexes an equivariant Chern character under certain conditions. This applies for instance to the sources of the assembly maps in the Farrell-Jones Conjecture with respect to the family F of finite subgroups and in the Baum-Connes Conjecture. Thus we get an explicit calculation of Q ⊗Z Kn(RG) and Q ⊗Z Ln(RG) for a comm...

متن کامل

Fuzzy Line Bundles, the Chern Character and Topological Charges over the Fuzzy Sphere

Using the theory of quantized equivariant vector bundles over compact coadjoint orbits we determine the Chern characters of all noncommutative line bundles over the fuzzy sphere with regard to its derivation based differential calculus. The associated Chern numbers (topological charges) arise to be non-integer, in the commutative limit the well known integer Chern numbers of the complex line bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005