Inverse HAMILTONIAN CYCLE and Inverse 3-D MATCHING Are coNP-Complete

نویسندگان

  • Michael Krüger
  • Harald Hempel
چکیده

In this paper we show that the Inverse problems of HAMILTONIAN CYCLE and 3D-MATCHING are coNP complete. This completes the study of inverse problems of the six natural NP-complete problems from [GJ79] and answers an open question from [Ch03]. We classify the inverse complexity of the natural verifier for HAMILTONIAN CYCLE and 3D-MATCHING by showing coNP-completeness of the corresponding inverse problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete pivoting strategy for the $IUL$ preconditioner obtained from Backward Factored APproximate INVerse process

‎In this paper‎, ‎we use a complete pivoting strategy to compute the IUL preconditioner obtained as the by-product of the Backward Factored APproximate INVerse process‎. ‎This pivoting is based on the complete pivoting strategy of the Backward IJK version of Gaussian Elimination process‎. ‎There is a parameter $alpha$ to control the complete pivoting process‎. ‎We have studied the effect of dif...

متن کامل

On the inverse maximum perfect matching problem under the bottleneck-type Hamming distance

Given an undirected network G(V,A,c) and a perfect matching M of G, the inverse maximum perfect matching problem consists of modifying minimally the elements of c so that M becomes a maximum perfect matching with respect to the modified vector. In this article, we consider the inverse problem when the modifications are measured by the weighted bottleneck-type Hamming distance. We propose an alg...

متن کامل

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

Minimal TSP Tour is coNP-Complete

The problem of deciding if a Traveling Salesman Problem (TSP) tour is minimal was proved to be coNP–complete by Papadimitriou and Steiglitz. We give an alternative proof based on a polynomial time reduction from 3SAT. Like the original proof, our reduction also shows that given a graph G and an Hamiltonian path of G, it is NP–complete to check if G contains an Hamiltonian cycle (Restricted Hami...

متن کامل

Inverse Problems Have Inverse Complexity

In this paper we show that inverting problems of higher complexity is easier than inverting problems of lower complexity. While inverting Σ i 3CNFSAT is known to be coNP-complete [6] for i = 1 we prove that it remains coNP-complete for i = 2 and is in P for all i ≥ 3. Relatedly, we show that inverting Σ i 3DNFSAT is in P for all i ≥ 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006