Probabilistic Analysis of Balancing Scores for Causal Inference
نویسنده
چکیده
Propensity scores are often used for stratification of treatment and control groups of subjects in observational data to remove confounding bias when estimating of causal effect of the treatment on an outcome in so-called potential outcome causal modeling framework. In this article, we try to get some insights into basic behavior of the propensity scores in a probabilistic sense. We do a simple analysis of their usage confining to the case of discrete confounding covariates and outcomes. While making clear about behavior of the propensity score our analysis shows how the so-called prognostic score can be derived simultaneously. However the prognostic score is derived in a limited sense in the current literature whereas our derivation is more general and shows all possibilities of having the score. And we call it outcome score. We argue that application of both the propensity score and the outcome score is the most efficient way for reduction of dimension in the confounding covariates as opposed to current belief that the propensity score alone is the most efficient way.
منابع مشابه
Risk Analysis of Operating Room Using the Fuzzy Bayesian Network Model
To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملComment on “ Causal inference , probability theory , and graphical insights
Modern causal inference owes much of its progress to a strict and crisp distinction between probabilistic and causal information. This distinction recognizes that probability theory is insufficient for posing causal questions, let alone answering them, and dictates that every exercise in causal inference must commence with some extra knowledge that cannot be expressed in probability alone. The ...
متن کاملJoint Probabilistic Inference of Causal Structure
Causal directed acyclic graphical models (DAGs) are powerful reasoning tools in the study and estimation of cause and effect in scientific and socio-behavioral phenomena. In many domains where the cause and effect structure is unknown, a key challenge in studying causality with DAGs is learning the structure of causal graphs directly from observational data. Traditional approaches to causal str...
متن کاملDiscovering Brain Mechanisms Using Network Analysis and Causal Modeling
Mechanist philosophers have examined several strategies scientists use for discovering causal mechanisms in neuroscience. Findings about the anatomical organization of the brain play a central role in several such strategies. Little attention has been paid, however, to the use of network analysis and causal modeling techniques for mechanism discovery. In particular, mechanist philosophers have ...
متن کامل