A Convex Formulation of Continuous Multi-label Problems
نویسندگان
چکیده
We propose a spatially continuous formulation of Ishikawa’s discrete multi-label problem. We show that the resulting non-convex variational problem can be reformulated as a convex variational problem via embedding in a higher dimensional space. This variational problem can be interpreted as a minimal surface problem in an anisotropic Riemannian space. In several stereo experiments we show that the proposed continuous formulation is superior to its discrete counterpart in terms of computing time, memory efficiency and metrication errors.
منابع مشابه
A Convex Discrete-Continuous Approach for Markov Random Fields
We propose an extension of the well-known LP relaxation for Markov random fields to explicitly allow continuous label spaces. Unlike conventional continuous formulations of labelling problems which assume that the unary and pairwise potentials are convex, our formulation allows them to be general piecewise convex functions with continuous domains. Furthermore, we present the extension of the wi...
متن کاملGraph-based variational optimization and applications in computer vision. (Optimisation variationnelle discrète et applications en vision par ordinateur)
Many computer vision applications such as image filtering, segmentation and stereovision can be formulated as optimization problems. Recently discrete, convex, globally optimal methods have received a lot of attention. Many graph-based methods suffer from metrication artifacts. Segmented contours are blocky in areas where contour information is lacking. In Chapter 2, we develop a discrete yet i...
متن کاملScalable Metric Learning for Co-Embedding
We present a general formulation of metric learning for co-embedding, where the goal is to relate objects from different sets. The framework allows metric learning to be applied to a wide range of problems—including link prediction, relation learning, multi-label tagging and ranking—while allowing training to be reformulated as convex optimization. For training we provide a fast iterative algor...
متن کاملA Co-occurrence Prior for Continuous Multi-label Optimization
To obtain high-quality segmentation results the integration of semantic information is indispensable. In contrast to existing segmentation methods which use a spatial regularizer, i.e. a local interaction between image points, the co-occurrence prior [15] imposes penalties on the co-existence of different labels in a segmentation. We propose a continuous domain formulation of this prior, using ...
متن کاملMulti-label Multiple Kernel Learning
We present a multi-label multiple kernel learning (MKL) formulation in which the data are embedded into a low-dimensional space directed by the instancelabel correlations encoded into a hypergraph. We formulate the problem in the kernel-induced feature space and propose to learn the kernel matrix as a linear combination of a given collection of kernel matrices in the MKL framework. The proposed...
متن کامل