Ex vivo culture of primary human colonic tissue for studying transcriptional responses to 1α,25(OH)2 and 25(OH) vitamin D.

نویسندگان

  • Brandon Mapes
  • Meredith Chase
  • Ellie Hong
  • Anton Ludvik
  • Katy Ceryes
  • Yong Huang
  • Sonia S Kupfer
چکیده

1α,25-Dihydroxyvitamin D3 [1α,25(OH)2D3] is a steroid hormone derived from circulating 25(OH) vitamin D [25(OH)D] with chemopreventive effects in colorectal cancer. 1α,25(OH)2D3 acts through transcriptional mechanisms; however, our understanding of vitamin D transcriptional responses in the colon is derived from studies in transformed cancer cell lines which may not represent responses in normal healthy tissue. Here, we describe the optimization of an ex vivo culture model using primary colonic biopsy samples for studying short-term transcriptional response induced by 1α,25(OH)2D3 and 25(OH)D treatment. Colon biopsy samples from healthy subjects were maintained in primary culture and treated in parallel with 100 nM 1α,25(OH)2D3 or 62.5 nM 25(OH)D and vehicle control (ethanol). Viability was assessed using histology and enzymatic assays. Genome-wide transcriptional responses to 1α,25(OH)2D3 were assessed and expression of 25(OH)D targets CYP27B1 and CYP24A1 were measured by real time PCR. We show that ex vivo culture of colonic tissue remains viable for up to 8 h. The largest number of differentially expressed genes in response to 1α,25(OH)2D3 was noted after 6 h (n = 120). As proof of concept, the top upregulated gene was CYP24A1, a well-established vitamin D-responsive gene. With 25(OH)D treatment, mRNA expression of CYP27B1 was significantly increased after 1 h, while expression of CYP24A1 was greatest at 8 h. Ex vivo culture can be used to assess short-term transcriptional responses to 1α,25(OH)2D3 and 25(OH)D in primary tissue from human colon. Future studies will address interindividual differences in transcriptional responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vitamin D enhances corneal epithelial barrier function.

PURPOSE The purpose of this study was to determine whether 25-hydroxyvitamin D(3) (25(OH)D(3)) and/or its active metabolite, 1α,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), can enhance corneal epithelial barrier function. The authors also determined if corneas contain mRNA for the vitamin D receptor (VDR) and 1α-hydroxylase, the enzyme required to convert 25(OH)D(3) to 1,25(OH)(2)D(3), and measu...

متن کامل

1α,25(OH)2-3-Epi-Vitamin D3, a Natural Physiological Metabolite of Vitamin D3: Its Synthesis, Biological Activity and Crystal Structure with Its Receptor

BACKGROUND The 1α,25-dihydroxy-3-epi-vitamin-D3 (1α,25(OH)2-3-epi-D3), a natural metabolite of the seco-steroid vitamin D3, exerts its biological activity through binding to its cognate vitamin D nuclear receptor (VDR), a ligand dependent transcription regulator. In vivo action of 1α,25(OH)2-3-epi-D3 is tissue-specific and exhibits lowest calcemic effect compared to that induced by 1α,25(OH)2D3...

متن کامل

Chromatin acetylation at transcription start sites and vitamin D receptor binding regions relates to effects of 1α,25-dihydroxyvitamin D3 and histone deacetylase inhibitors on gene expression

The nuclear hormone 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3) or 1,25D) regulates its target genes via activation of the transcription factor vitamin D receptor (VDR) far more specifically than the chromatin modifier trichostatin A (TsA) via its inhibitory action on histone deacetylases. We selected the thrombomodulin gene locus with its complex pattern of five VDR binding sites and multipl...

متن کامل

Cytochrome P450 3A-mediated microsomal biotransformation of 1α,25-dihydroxyvitamin D3 in mouse and human liver: drug-related induction and inhibition of catabolism.

The biological activities of vitamin D(3) are exerted through the dihydroxy metabolite of vitamin D(3) [1α,25(OH)(2)D(3)]. Hepatic biotransformation of 1α,25(OH)(2)D(3) by cytochrome P450 (P450) enzymes could be an important determinant of bioavailability in serum and tissues. In the present study, we investigated the comparative biotransformation of 1α,25(OH)(2)D(3) in mouse and human liver mi...

متن کامل

Vitamin D endocrine system and osteoclasts

Vitamin D was discovered as an anti-rachitic agent preventing a failure in bone mineralization, but it is now established that the active form of vitamin D3 (1α,25(OH)2D3) induces bone resorption. Discovery of the receptor activator of nuclear factor -κB ligand (RANKL) uncovered the molecular mechanism by which 1α,25(OH)2D3 stimulates bone resorption. Treating osteoblastic cells with 1α,25(OH)2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological genomics

دوره 46 8  شماره 

صفحات  -

تاریخ انتشار 2014