Persistency of Prediction Accuracy and Genetic Gain in Synthetic Populations Under Recurrent Genomic Selection
نویسندگان
چکیده
Recurrent selection (RS) has been used in plant breeding to successively improve synthetic and other multiparental populations. Synthetics are generated from a limited number of parents [Formula: see text] but little is known about how [Formula: see text] affects genomic selection (GS) in RS, especially the persistency of prediction accuracy ([Formula: see text]) and genetic gain. Synthetics were simulated by intermating [Formula: see text]= 2-32 parent lines from an ancestral population with short- or long-range linkage disequilibrium ([Formula: see text]) and subjected to multiple cycles of GS. We determined [Formula: see text] and genetic gain across 30 cycles for different training set (TS) sizes, marker densities, and generations of recombination before model training. Contributions to [Formula: see text] and genetic gain from pedigree relationships, as well as from cosegregation and [Formula: see text] between QTL and markers, were analyzed via four scenarios differing in (i) the relatedness between TS and selection candidates and (ii) whether selection was based on markers or pedigree records. Persistency of [Formula: see text] was high for small [Formula: see text] where predominantly cosegregation contributed to [Formula: see text], but also for large [Formula: see text] where [Formula: see text] replaced cosegregation as the dominant information source. Together with increasing genetic variance, this compensation resulted in relatively constant long- and short-term genetic gain for increasing [Formula: see text] > 4, given long-range LDA in the ancestral population. Although our scenarios suggest that information from pedigree relationships contributed to [Formula: see text] for only very few generations in GS, we expect a longer contribution than in pedigree BLUP, because capturing Mendelian sampling by markers reduces selective pressure on pedigree relationships. Larger TS size ([Formula: see text]) and higher marker density improved persistency of [Formula: see text] and hence genetic gain, but additional recombinations could not increase genetic gain.
منابع مشابه
مقایسه روش های مختلف آماری در انتخاب ژنومی گاوهای هلشتاین
Genomic selection combines statistical methods with genomic data to predict genetic values for complex traits. The accuracy of prediction of genetic values in selected population has a great effect on the success of this selection method. Accuracy of genomic prediction is highly dependent on the statistical model used to estimate marker effects in reference population. Various factors such a...
متن کاملComparing Different Marker Densities and Various Reference Populations Using Pedigree-Marker Best Linear Unbiased Prediction (BLUP) Model
In order to have successful application of genomic selection, reference population and marker density should be chosen properly. This study purpose was to investigate the accuracy of genomic estimated breeding values in terms of low (5K), intermediate (50K) and high (777K) densities in the simulated populations, when different scenarios were applied about the reference populations selecting. Af...
متن کاملCorrection: Accuracy of Genomic Selection in a Rice Synthetic Population Developed for Recurrent Selection Breeding
Genomic selection (GS) is a promising strategy for enhancing genetic gain. We investigated the accuracy of genomic estimated breeding values (GEBV) in four inter-related synthetic populations that underwent several cycles of recurrent selection in an upland rice-breeding program. A total of 343 S2:4 lines extracted from those populations were phenotyped for flowering time, plant height, grain y...
متن کاملارزیابی صحت پیشبینی ژنومی در معماریهای مختلف ژنومی صفات کمی و آستانهای با جانهی دادههای ژنومی شبیهسازیشده، توسط روش جنگل تصادفی
Genomic selection is a promising challenge for discovering genetic variants influencing quantitative and threshold traits for improving the genetic gain and accuracy of genomic prediction in animal breeding. Since a proportion of genotypes are generally uncalled, therefore, prediction of genomic accuracy requires imputation of missing genotypes. The objectives of this study were (1) to quantify...
متن کاملAccuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods
The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...
متن کامل