Fuzzy Modeling for Handwritten Arabic Numeral Recognition
نویسندگان
چکیده
In this paper we present a novel fuzzy technique for Arabic (Indian) online digits recognition. We use directional features to automatically build generic fuzzy models for Arabic online digits using the training data. The fuzzy models include the samples’ trend lines, the upper and lower envelops of the samples of each digit. Automatically generated weights for the different segments of the digits’ models are also used. In addition, the fuzzy intervals are automatically estimated using the training data. The fuzzy models produce robust models that can handle the variability in the handwriting styles. The classification phase consists of two cascaded stages, in the first stage the system classifies digits into zero/nonzero classes using five features (viz. length, width, height, height’s variance and aspect ratio) and the second stage classifies digits 1 to 9 using fuzzy classification based on directional and segment histogram features. Support Vector Machine (SVM) is used in the first stage and syntactic fuzzy classifier in the second stage. A database containing 32695 Arabic online digits is used in the experimentation. The results show that the first stage (zero/nonzero) achieved accuracy of 99.55% and the second stage (digits from 1 to 9) achieved accuracy of 98.01%. The misclassified samples are evaluated subjectively and results indicate that humans could not classify 35% of the misclassified digits.
منابع مشابه
Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملHandwritten Arabic Numeral Recognition using a Multi Layer Perceptron
Handwritten numeral recognition is in general a benchmark problem of Pattern Recognition and Artificial Intelligence. Compared to the problem of printed numeral recognition, the problem of handwritten numeral recognition is compounded due to variations in shapes and sizes of handwritten characters. Considering all these, the problem of handwritten numeral recognition is addressed under the pres...
متن کاملArabic Handwritten Alphanumeric Character Recognition using Fuzzy Attributed Turning Functions
In this paper, we present a novel method for recognition of unconstrained handwritten Arabic alphanumeric characters. The algorithm binarizes the character image, smoothes it and extracts its contour. A novel approach for polygonal approximation of handwritten character contours is applied. The directions and length features are extracted from the polygonal approximation. These features are use...
متن کاملOn-line handwritten digit recognition based on trajectory and velocity modeling
The handwriting is one of the most familiar communication media. Pen based interface combined with automatic handwriting recognition offers a very easy and natural input method. The handwritten signal is on-line collected via a digitizing device, and it is classified as one pre-specified set of characters. The main techniques applied in our work include two fields of research. The first one con...
متن کاملIsolated Arabic Handwritten Character Recognition: A Survey
Offline Arabic handwriting character recognition (AHCR) systems are very important since they make life easier for governments, researchers and scholars who are dealing with Arabic language in education, documentation and security. A widening use of the Arabic script in countries that deals with the Arabic language and countries that use the Arabic script in their languages such as Persian and ...
متن کامل