Distortion of quasiconformal mappings with identity boundary values

نویسندگان

  • Matti Vuorinen
  • Xiaohui Zhang
چکیده

Teichmüller’s classical mapping problem for plane domains concerns finding a lower bound for the maximal dilatation of a quasiconformal homeomorphism which holds the boundary pointwise fixed, maps the domain onto itself, and maps a given point of the domain to another given point of the domain. For a domain D ⊂ Rn , n ≥ 2 , we consider the class of all Kquasiconformal maps of D onto itself with identity boundary values and Teichmüller’s problem in this context. Given a map f of this class and a point x ∈ D , we show that the maximal dilatation of f has a lower bound in terms of the distance of x and f(x). We improve recent results for the unit ball and consider this problem in other more general domains. For instance, convex domains, bounded domains and domains with uniformly perfect boundaries are studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal Mappings of Finite Distortion

The theory of mappings of nite distortion has arisen out of a need to extend the ideas and applications of the classical theory of quasiconformal mappings to the degenerate elliptic setting. There one nds concrete applications in materials science, particularly non-linear elasticity and critical phase phenomena, and the calculus of variations. In this paper we re ne and extend these connections...

متن کامل

The Distortion Theorem for Quasiconformal Mappings, Schottky’s Theorem and Holomorphic Motions

We prove the equivalence of Schottky’s theorem and the distortion theorem for planar quasiconformal mappings via the theory of holomorphic motions. The ideas lead to new methods in the study of distortion theorems for quasiconformal mappings and a new proof of Teichmüller’s distortion theorem.

متن کامل

Modular Equations and Distortion Functions

Modular equations occur in number theory, but it is less known that such equations also occur in the study of deformation properties of quasiconformal mappings. The authors study two important plane quasiconformal distortion functions, obtaining monotonicity and convexity properties, and finding sharp bounds for them. Applications are provided that relate to the quasiconformal Schwarz Lemma and...

متن کامل

2000]Primary 30C80 DISTORTION IN THE SPHERICAL METRIC UNDER QUASICONFORMAL MAPPINGS

This paper contains bounds for the distortion in the spherical metric, that is to say bounds for the constant of Hölder continuity of mappings f : (R, q) → (R, q) where q denotes the spherical metric. The mappings considered are K-quasiconformal (K ≥ 1) and satisfy some normalizations or restrictions. All bounds are explicit and asymptotically sharp as K → 1.

متن کامل

Distortion in the Spherical Metric under Quasiconformal Mappings

This paper contains bounds for the distortion in the spherical metric, that is to say, bounds for the constant of Hölder continuity of mappings f : (Rn, q) → (Rn, q) where q denotes the spherical metric. The mappings considered are K-quasiconformal (K ≥ 1) and satisfy some normalizations or restrictions. All bounds are explicit and asymptotically sharp as K → 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2014