Potassium channel-mediated vasorelaxation is impaired in experimental renal failure.
نویسندگان
چکیده
Chronic renal failure is associated with increased cardiovascular morbidity and abnormal arterial tone, but the underlying pathophysiological mechanisms are poorly understood. Therefore, we studied the responses of isolated mesenteric arterial rings from Wistar-Kyoto rats in standard organ chambers 6 wk after subtotal (5/6) nephrectomy or sham operation. Subtotal nephrectomy resulted in a 1.7-fold elevation of plasma urea nitrogen, whereas blood pressure was not significantly affected. Endothelium-mediated relaxations of norepinephrine-precontracted rings to ACh were impaired in renal failure rats. The nitric oxide (NO) synthase inhibitor N G-nitro-l-arginine methyl ester inhibited relaxations to ACh more effectively in the renal failure group, whereas the cyclooxygenase inhibitor diclofenac did not significantly affect the response in either group. Inhibition of Ca2+-activated K+ channels by charybdotoxin and apamin attenuated NO synthase- and cyclooxygenase-resistant relaxations to ACh in control but not renal failure rats and abolished the difference between these groups. Endothelium-independent relaxations to isoproterenol and cromakalim, vasodilators acting via β-adrenoceptors and ATP-sensitive K+ channels, respectively, were impaired in the renal failure group, whereas relaxations to the NO donor nitroprusside were similar in both groups. In conclusion, endothelium-mediated relaxation in renal failure rats was impaired in the absence and presence of NO synthase and cyclooxygenase inhibition but not with prevented smooth muscle hyperpolarization. Endothelium-independent relaxations to isoproterenol and cromakalim were also attenuated after 5/6 nephrectomy. These results suggest that impaired vasodilatation in experimental renal failure could be attributed to reduced relaxation via arterial K+ channels.
منابع مشابه
AT1 receptor blockade improves vasorelaxation in experimental renal failure.
It is not known whether angiotensin II type 1 receptor antagonists can influence the function and morphology of small arteries in renal failure. We investigated the effect of 8-week losartan therapy (20 mg/kg per day) on isolated mesenteric resistance arteries by wire and pressure myographs in 5/6 nephrectomized rats. Plasma urea nitrogen was elevated 1.6-fold after nephrectomy, and ventricular...
متن کاملThe Mechanism of Preventive Effect of Captopril on Renal Ischemia Reperfusion Injury is Independent of ATP Dependent Potassium Channels
Background: Renal ischemia reperfusion (IR) injury has been a major source of concern during the past decades and angiotensin converting enzyme (ACE) inhibitors have been successfully used to prevent this injury. There have been some controversial reports about the involvement of KATP channels in the mechanism of action of ACE inhibitors. In this study, we examined the effect of KATP channel bl...
متن کاملHigh-calcium vs high-phosphate intake and small artery tone in advanced experimental renal insufficiency.
BACKGROUND Disturbed calcium-phosphorus balance significantly contributes to uraemic changes in large arteries. We examined the influences of high-calcium and high-phosphate intake on small artery tone in experimental renal insufficiency. METHODS Sixty-five rats were assigned to 5/6 nephrectomy (NTX) or sham operation. After 15 week disease progression, NTX rats were given high-calcium (3%), ...
متن کاملاثر حفاظتی سیمواستاتین در آسیب ناشی از ایسکمی – رپرفیوژن کلیه و نقش کانالهای پتاسیمی حساس به آدنوزین تری فسفات
Background & Aim: Renal dysfunction due to ischemia-reperfusion (I/R) injury is a common problem following renovascular surgery or kidney transplantation. There is a lot of emerging evidence that statins, which are HMG-COA reductase inhibitors, have renal protective effects against ischemia-reperfusion injury,but the exact mechanism of their protective effect has not been detected properly....
متن کاملEndothelial SK3 channel-associated Ca2+ microdomains modulate blood pressure.
Activation of vascular endothelial small- (KCa2.3, SK3) or intermediate- (KCa3.1, IK1) conductance Ca(2+)-activated potassium channels induces vasorelaxation via an endothelium-derived hyperpolarization (EDH) pathway. Although the activation of SK3 and IK1 channels converges on EDH, their subcellular effects on signal transduction are different and not completely clear. In this study, a novel e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 277 4 Pt 2 شماره
صفحات -
تاریخ انتشار 1999