Convergence Refinement

نویسندگان

  • Murat Demirbas
  • Anish Arora
چکیده

Refinement tools such as compilers do not necessarily preserve fault-tolerance. That is, given a fault-tolerant program in a high-level language as input, the output of a compiler in a lower-level language will not necessarily be faulttolerant. In this paper, we identify a type of refinement, namely “convergence refinement”, that preserves the faulttolerance property of stabilization. We illustrate the use of convergence refinement by presenting the first formal design of Dijkstra’s little-understood 3-state stabilizing token-ring system. Our designs begin with simple, abstract token-ring systems that are not stabilizing, and then add an abstract “wrapper” to the systems so as to achieve stabilization. The system and the wrapper are then refined to obtain a concrete token-ring system, while preserving stabilization. In fact, the two are refined independently, which demonstrates that convergence refinement is amenable for “graybox” design of stabilizing implementations, i.e., design of system stabilization based solely on system specification and without knowledge of system implementation details.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

With a new refinement paradigm towards anisotropic adaptive FEM on triangular meshes

Adaptive anisotropic refinement of finite element meshes allows to reduce the computational effort required to achieve a specified accuracy of the solution of a PDE problem. We present a new approach to adaptive refinement and demonstrate that this allows to construct algorithms which generate very flexible and efficient anisotropically refined meshes, even improving the convergence order compa...

متن کامل

LOCAL MULTIGRID IN H(curl)

We consider H(curl, Ω)-elliptic variational problems on bounded Lipschitz polyhedra and their finite element Galerkin discretization by means of lowest order edge elements. We assume that the underlying tetrahedral mesh has been created by successive local mesh refinement, either by local uniform refinement with hanging nodes or bisection refinement. In this setting we develop a convergence the...

متن کامل

Convergence of adaptive finite element methods for eigenvalue problems

In this article we prove convergence of adaptive finite element methods for second order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.

متن کامل

Local Mesh Refinement with the PCD Method

We propose some numerical tests for local mesh refinement using the PCD (piecewise constant distributions) method. The PCDmethod is a new discretization technique of boundary value problems. It represents the unknown distribution as well as its derivatives by piecewise constant distributions but on distinct meshes. With the PCDmethod, we can introduce a local mesh refinement without the use of ...

متن کامل

Convergence Estimates for Multigrid Algorithms without Regularity Assumptions

A new technique for proving rate of convergence estimates of multigrid algorithms for symmetric positive definite problems will be given in this paper. The standard multigrid theory requires a "regularity and approximation" assumption. In contrast, the new theory requires only an easily verified approximation assumption. This leads to convergence results for multigrid refinement applications, p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002