Site-Specific Interaction between α-Synuclein and Membranes Probed by NMR-Observed Methionine Oxidation Rates

نویسندگان

  • Alexander S. Maltsev
  • Jue Chen
  • Rodney L. Levine
  • Ad Bax
چکیده

α-Synuclein (αS) is an intrinsically disordered protein that is water-soluble but also can bind negatively charged lipid membranes while adopting an α-helical conformation. Membrane affinity is increased by post-translational N-terminal acetylation, a common modification in all eukaryotic cells. In the presence of lipid vesicles containing a small fraction of peroxidized lipids, the N-terminal Met residues in αS (Met1 and Met5) rapidly oxidize while reducing the toxic lipid hydroperoxide to a nonreactive lipid hydroxide, whereas C-terminal Met residues remain unaffected. Met oxidation can be probed conveniently and quantitatively by NMR spectroscopy. The results show that oxidation of Met1 reduces the rate of oxidation of Met5 and vice versa as a result of decreased membrane affinity of the partially oxidized protein. The effect of Met oxidation on the αS-membrane affinity extends over large distances, as in the V49M mutant, oxidation of Met1 and Met5 strongly impacts the oxidation rate of Met49 and vice versa. When not bound to membrane, oxidized Met1 and Met5 of αS are excellent substrates for methionine sulfoxide reductase (Msr), thereby providing an efficient vehicle for water-soluble Msr enzymes to protect the membrane against oxidative damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erratum to “Decreased Phosphorylation and Increased Methionine Oxidation of α-Synuclein in the Methionine Sulfoxide Reductase A Knockout Mouse”

Previously, we have showed that overexpression of methionine-oxidized α-synuclein in methionine sulfoxide reductase A (MsrA) null mutant yeast cells inhibits α-synuclein phosphorylation and increases protein fibrillation. The current studies show that ablation of mouse MsrA gene caused enhanced methionine oxidation of α-synuclein while reducing its own phophorylation levels, especially in the h...

متن کامل

Intracellular repair of oxidation-damaged α-synuclein fails to target C-terminal modification sites.

Cellular oxidative stress serves as a common denominator in many neurodegenerative disorders, including Parkinson's disease. Here we use in-cell NMR spectroscopy to study the fate of the oxidation-damaged Parkinson's disease protein alpha-synuclein (α-Syn) in non-neuronal and neuronal mammalian cells. Specifically, we deliver methionine-oxidized, isotope-enriched α-Syn into cultured cells and f...

متن کامل

Dopamine-Mediated Oxidation of Methionine 127 in α-Synuclein Causes Cytotoxicity and Oligomerization of α-Synuclein

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons and the presence of Lewy bodies. Many recent studies focused on the interaction between α-synuclein (α-syn) and dopamine in the pathogenesis of PD, and fluorescent anisotropy suggested that the C-terminal region of α-syn may be a target for modification by dopamine. However, it i...

متن کامل

Chemical properties of lipids strongly affect the kinetics of the membrane-induced aggregation of α-synuclein.

Intracellular α-synuclein deposits, known as Lewy bodies, have been linked to a range of neurodegenerative disorders, including Parkinson's disease. α-Synuclein binds to synthetic and biological lipids, and this interaction has been shown to play a crucial role for both α-synuclein's native function, including synaptic plasticity, and the initiation of its aggregation. Here, we describe the int...

متن کامل

Exploring the structural details of Cu(I) binding to α-synuclein by NMR spectroscopy.

The aggregation of α-synuclein (AS) is selectively enhanced by copper in vitro, and the interaction is proposed to play a potential role in vivo. In this work, we report the structural, residue-specific characterization of Cu(I) binding to AS and demonstrate that the protein is able to bind Cu(I) with relatively high affinity in a coordination environment that involves the participation of Met1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2013