Dry mechanochemical synthesis of alane from LiH and AlCl3.
نویسندگان
چکیده
A mechanochemical process for the synthesis of alane (AlH3) starting from lithium hydride (LiH) and aluminium chloride (AlCl3) at room temperature and the underlying reaction pathway have been studied. In contrast to a conventional process using the same two reactants dissolved in diethyl ether, our approach enables a solvent-free synthesis, thereby directly leading to adduct-free alane. The method described here is quick and efficient, resulting in the quantitative conversion of all aluminium in the starting mixture to alane. Both the intermediate compounds formed during the reaction and the final products have been characterized by powder X-ray diffraction, solid-state (27)Al NMR spectroscopy, and temperature programmed desorption analysis of the as-milled mixtures. We show that excess LiH in the starting mixture (with an optimal ratio of 9LiH : 1AlCl3) is essential for the formation and stability of Al-H bonds, initially in the form of alanates and, eventually, as alane. Further processing of this mixture, gradually adding AlCl3 to reach the ideal 3LiH : 1AlCl3 stoichiometry, appears to restrict the local accumulation of AlCl3 during the ball-milling process, thereby preventing the formation of unstable intermediates that decompose to metallic Al and molecular hydrogen. We also demonstrate that under the milling conditions used, a moderate hydrogen pressure of ca. 300 bar is required to suppress competing reactions that lead to the formation of metallic Al at room temperature. The identification of the reaction intermediates at each stage of the synthesis provides significant insight into the mechanism of this solid-state reaction, which may potentially afford a more rational approach toward the production of AlH3 in a simple solvent-free process.
منابع مشابه
Mechanochemical synthesis of alumina nanoparticles
Abstract: Nano- size alumina particles have been synthesized by mechanical activation of a dry powder mixture of AlCl3 and CaO. Mechanical milling of the above raw materials with the conditions adopted in this study resulted in the formation of a mixture consisting of crystalline CaO and amorphous aluminum chlorides phases. There was no sign of chemical reaction occurring during milling stag...
متن کاملApplication of Experimental Design to Optimize the Synthesis of CdO Cauliflower-like Nanostructure Using Mechanochemical Method
Cauliflower-like nanostructure of cadmium oxide was synthesized by utilizing mechanochemical reaction followed calcination procedure for the first time. The design of experiment (DOE) by Taguchi method was used to study influence of the chosen factors and to consider optimum conditions of the experiments. The temperature of calcining, the duration of milling, the duration of calcining and react...
متن کاملFacile synthesis of copper oxide nanoparticles using copper hydroxide by mechanochemical process
A facile mechanochemical-based method for synthesis of copper oxide (CuO) nanoparticles is here by introduced. For this purpose, copper hydroxide powder was synthesized through a facile solution method (CuSO4 + 2 Na(OH) → Cu(OH)2 + Na2SO4) after which milling of as-prepared Cu(OH)2 precursor and NaCl resulted in the mechanochemical dehydration of Cu(OH)2 and dispersion of CuO nanoparticles into...
متن کاملMechanistic models for LAH reductions of acetonitrile and malononitrile. Aggregation effects of Li+ and AlH3 on imide-enamide equilibria.
The results are reported of an ab initio study of the addition of LiAlH(4) to acetonitrile and malononitrile at the MP2(full)/6-311+G* level considering the effects of electron correlation at higher levels up to QCISD(T)/6-311++G(2df,2pd) and including ether solvation. All imide (RCH(2)CH═N(-)) and enamide (RCH(-)CH═NH ↔ RCH═CHN(-)H) adducts feature strong interactions between the organic anion...
متن کاملThe Effect of Rotation Speed and Time of Milling on Synthesis and Properties of Fluoridated Hydroxyapatite Biomaterial
Synthetic hydroxyapatite (HA) is the most helpful because of its similarity to natural bone in both crystalline structure and chemical composition. Recently, fluoridated hydroxyapatite (FHA) has been developed in dental and orthopedic application because it has lower solubility than pure HA, while maintaining the comparable bioactivity and biocompatibility. The aim of this study was to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Faraday discussions
دوره 170 شماره
صفحات -
تاریخ انتشار 2014